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Abstract

Now, it is long known that gene expression and chemical kinetics are subject to random

fluctuations. These lead to deviations from deterministic models that do not account for

the random nature of biochemical kinetics. Successfully incorporating these stochastic

dynamics is of great interest so that one can better model, and more closely understand,

the intricate phenomena inherent in biological mechanisms. Many previous studies have

been conducted in modelling such processes stochastically, for instance processes such

as genetic autoregulation, Michaelis-Menten enzyme action and ant recruitment models.

However, the majority of these studies explore only the steady state solutions of such

processes while assuming mass-action kinetics, without considering: (1) extrinsic noise,

(2) transience from an initial condition, or even (3) the finite, non-continuous nature of

molecule or agent numbers.

This thesis focuses on the aforementioned complex systems, with an emphasis on how to

use toy models in responsible and informed ways. Responsible refers to a knowledge of

how good our approximations of microscopic dynamics are and their limitations: Do we

understand the assumptions that commonly employed approximations rely on? Informed

refers to whether a model we design is sufficiently minimal or complex to represent

the underlying biochemical (or economical) kinetics: Can we use alternative models

of similar simplicity (possibly mechanistically informed) to more properly capture the

dynamics of the system we are attempting to model? Further issues pursued in this thesis

are whether common approximative methods can be extended to effectively include

details of more complex underlying dynamics, or whether we can move beyond typical

steady state solutions and explore transience from an initial condition.

There are several main findings from our studies. We find that for non mass-action

Hill-type propensities, often used in biochemical kinetics, that typically only assume

time scale separation as the basis of approximation, that finite molecule number effects

can greatly perturb their accuracy. Then, we show that the addition of non-Gaussian

colored noise to biochemical rate parameters can capture intricate characteristics of

gene expression that are not explicitly modelled. For common two-state gene models,

we explore why they seem to be so effective at approximating gene expression, where it

is known that several key rate limiting steps are ignored. Finally, we develop transient

solutions to master equations describing Michaelis-Menten enzyme kinetics and ant

recruitment, and we show how to extend the solutions therein to more general forms.
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Lay Summary

In order to understand the world around us, it is often convenient to construct

mathematical models that allow one to make predictions about the future, or to

understand why something has previously occurred. Broadly speaking, mathematical

models come in two forms: those which include random behaviours, and those that

do not. Newton’s theory of gravity is an example of a model that does not include

random behaviour. This is appropriate since planets and stars in space generally assume

motion that is effectively unperturbed by random collisions with the low densities of

molecules in the vacuum of space. Their motion is deterministic, meaning that if we

know the position and velocity of a planet around a star, then we know everything about

its future evolution. But what about the motion of an air molecule that bumps into

many surrounding air molecules? Or the motion of a cell traversing a surface? Or the

movement of people in a crowd? Knowing the position and velocity of an air molecule at

one time will not give you anything other than a probabilistic measure of where it will

be in the future as generally we do not know (and could not comprehend) the positions

and velocities of all surrounding molecules. Therefore, the models we construct must

take into account the complicated nature of interactions between molecules, cells and

people.

To describe these processes we do not consider each individual agent interacting with

all other agents (as this quickly becomes a computational nightmare!), but instead

we consider simplified systems that capture only the relevant and essential biology or

physics, whilst still giving us an intuition to the real-world system. The simplification of

such systems allows us to gain insights into the behaviours that arise due to properties

of interest, meaning that we do not become confused by the cacophony of contributing

factors from all aspects of the real-world system. However, it is not always so clear

which simplified model truly captures the essence of the real-world system of interest.

Or indeed, what are the true limitations on the approximations we make? Further

to this, many aspects of interacting systems are typically ignored in favour of more

mathematically or computationally accessible ones.

Of interest in this thesis are three separate complex systems in each of which random

behaviour is a key property of the phenomena observed: (1) gene expression, (2) enzyme

kinetics, and (3) ant recruitment. In gene expression, the process by which genes produce

mRNA and proteins inside every cell in every living organism, the interest is in how

the random binding events between genes, mRNA and proteins affect the regulation of

gene products in a cell. For example, a special property of auto-regulation, which is the
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ability of a gene to make itself produce more or less of its own mRNA and proteins, is

that often two modes of behaviour are observed—a low production state and a high

production state. Genes that have this property are then capable of performing specific

functions in the gene regulatory network, hence understanding how these behaviours

arise is of vital interest. In enzyme kinetics, it is key to understand the efficiency of

product formation such that engineers can make maximal amounts of product in short

periods of time. Finally, ant recruitment, whereby ants are recruited by other ants

to work different food sources, is an important toy model due to its implications for

human herding behaviour. Particularly, it has been found that where imitation between

ants is strong enough that multiple behavioural modes can arise solely due to random

fluctuations in the system.

The work conducted in this thesis contributes to the above in three ways. (1) The

limitations of common approximations to genetic auto-regulation are explored. (2)

Mapping complex models to simpler ones using systematic methods (again in the

context of gene expression). (3) Assessing a common toy model of gene expression

and asking whether it truly captures the important dynamics of gene state change. (4)

Time-dependence in systems of enzymes and ants are studied, where the initial state of

a system impacts the behaviours one observes on long time scales.
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In history there are no control groups. There is no one to tell us what might have been.

We weep over the might have been, but there is no might have been. There never was. It

is supposed to be true that those who do not know history are condemned to repeat it. I

don’t believe knowing can save us.

Alfonsa, in All the Pretty Horses by Cormac McCarthy
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Chapter 1

Introduction

1.1 General motivation and overview

You wake up and have the same breakfast as normal, and go to work at the normal

time. The coffee in the office is a bit too cold, and because a meeting runs late into

lunch all the good food in the cafeteria is gone. Your train home comes unexpectedly on

time, and you arrive home in time for your favourite quiz show. Life is undoubtedly a

mixture and deterministic and random events. Each day in your life follows a particular

pattern, one that likely you have vague expectations for, but fluctuations in this plan

make the day unpredictable. Sometimes these fluctuations lead to small changes, but

more often than not, large macroscopic changes occur in your day due to the proverbial

butterfly flapping its wings.

In certain regimes, deterministic modelling via rate equations provides a tractable way

to quantitatively assess systems whose underlying dynamics are truly stochastic. For

example, where chemical reactions are conducted in large enough quantities (the large

molecule number regime where N ≫ 1), since the magnitude of molecular fluctuations is

typically ∝
√
N , the coefficient of variation scales as 1/

√
N , meaning that the larger the

system the lesser the effects of noise (where N denotes the molecule number) [8]. In these

regimes, approximating molecule number as continuous quantity does not lead to large

errors, since molecule numbers are large and 1/
√
N becomes negligible. However, for

systems with small numbers of agents, or else where stochastic multimodality (multiple

modes of behaviour whose origin is due to noise) occurs, the deterministic description is

often not enough, and to rely on it results in unnecessary errors.

That fluctuations are important in a multitude of complex systems has paved the way

for individual realisations that stochastic effects must be considered in many fields.

In gene expression this was elucidated by Elowitz et. al [9, 10], who emphasised that

noise (fluctuations in molecule numbers) puts limitations on the precision of gene

expression due to low copy numbers of genes, mRNA and proteins. They broke down

the extrinsic (noise due to cell-to-cell variability) and intrinsic (noise due to low copy

number effects still observed in homogeneous populations of cells) noises observed in

gene expression, and they provided a quantitative framework for modelling noise in gene
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1.1. General motivation and overview 2

expression. By constructing an experiment that allows for the the measurement of two

different fluorescent proteins, it was determined that gene expression noise is not always

largely extrinsic, but that in many cases intrinsic noise is a non-negligible factor. This

important finding made it clear that variation in gene expression is not entirely due

to cell-to-cell variability, but that individual cells have fluctuations in their own gene

expression profiles. The implications of this study have been far reaching. In its wake,

many researchers now spend time investigating: (1) The properties of intrinsic noise

in various network motifs [11, 12, 13], including autoregulation [14, 15, 16, 17, 18] and

feed-forward loops [19, 20, 21]; (2) In incorporating cell-cycle variability into models

of stochastic gene expression [22, 23, 24, 25, 26, 27, 28]; (3) Conducting experimental

studies of gene expression in low copy-number regimes via single molecule fluorescence

microscopy [29, 30, 31, 32, 33, 34]; (4) In the construction of minimal models of gene

expression over a variety of scales that accurately capture the effects of intrinsic noise

[35, 36, 37, 38]. It should be noted that although stochasticity limits the precision of

gene expression, it also provides a mechanism through which phenotypic and cell-type

diversification can occur [39].

The most commonly used analytically explored models of stochastic gene expression

typically involve a single gene, and either mRNA or proteins, although generally not both

together since this often makes analytics intractable. Furthermore, they often assume

that the biological steady state (or cyclo-stationary state for cell-cycle models [22, 23])

has been reached so that transient effects become negligible. This is in correspondence

with the idea that for most of the time gene expression happens in the so-called biological

steady-state and that perturbations away from this are the exception rather than the

rule [40]. The gene expression models of interest in this thesis are (1) the telegraph model

of gene expression [35, 41], and (2) genetic autoregulation [42, 43]. The telegraph model

is a simplification of gene expression that assumes the gene operates via an on/off switch,

meaning that the production of mature mRNA can either occur in a transcriptionally

active or inactive state. It is now common amongst experimental studies to directly infer

the parameters of the telegraph model straight from the data [44, 45, 46, 47]. On the

other hand, genetic autoregulation, despite being somewhat similar in structure to the

telegraph model (two genes states and the same number of reactions), realises radically

different behaviour since the bound state of the gene can only be activated by binding

with a protein—in the case where no proteins (or few) are available then the system

must remain in the unbound gene state. There are two forms of autoregulation, positive

and negative. Both of them have their individual uses. Positive feedback promotes

bimodality meaning that two differing modes of behaviour can be observed [15, 42, 39]

being beneficial for cellular differentiation. Whereas, negative feedback can act as a

control mechanism whereby when too many proteins are present the ability to produce

more of them is restricted [39]. Notably, bimodality seen in autoregulation is a purely
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stochastic phenomenon when cooperative binding is not present (i.e., when only a single

protein needs to bind for the gene to move into the bound state) [6]. Together, positive

and negative autoregulation contribute to the functioning of the circadian clock [48, 49]

and autoregulation is a very common network motif. For example, in E. coli it is

estimated that 40% of all transcription factors are self-regulated [11, 14].

Another relevant toy model in molecular biology is Michaelis-Menten enzyme kinetics

[50, 51]. It provides possibly the simplest description of catalysis on a microscopic level.

In the system, there are enzymes and substrates which can bind to each other to form a

complex. This complex can then either unbind to give back the substrate, or else go

on to produce the product, where in both cases the enzyme is conserved. Despite its

simple structure, this model is mainly studied from deterministic perspectives [52, 53],

often where only a single enzyme is present [54, 55]. Stochastic approaches to Michaelis-

Menten kinetics are few [56, 57], and the exact time-dependent solution for a single

enzyme although complete is practically difficult to use [58]. Since product formation

is generally assumed to be non-reversible, there exists no steady state distribution at

large times and only an absorbing state. Therefore, understanding the dynamics of the

Michaelis-Menten mechanism comes from a comprehension of the transient dynamics,

for which a solution with multiple enzymes is difficult not only from stochastic but also

from deterministic perspectives.

A final model that will be considered in this thesis is the ant recruitment model introduced

by Kirman (isomorphic to the Moran model used to model mutation in population

genetics) [59, 60]. This model has been of intense interest over the past two decades,

in particular due to the parallels it draws in how economic agents make decisions. It

concerns two food sources in a population of ants, where each ant is associated with

a single food source. The ants switch between the food sources due to two separate

influences—one being a random switching event while the other being a recruitment

interaction with other ants. The economic parallels arise in that under certain conditions

the ants coalesce on a single food source, due to the recruitment, an effect that is

entirely endogenous (meaning not due to external effects). This contradicts the standard

economic idea of the representative agent [61], which assumes that a heterogeneous

population of agents can be replaced, to a good approximation, by agents who take on

the average of all economic behaviour. In the world of representative agents, there are

no interactions and hence all changes in macrobehaviour (behavioural changes across

the whole population) occur from forces external to the system known as exogenous

forces. Kirman’s model of ant recruitment illustrates that endogenous forces can be

the primary force leading to large sways in economic decision making. Importantly,

the coalescence seen in the ant recruitment model is another example of stochastic
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bimodality that has no deterministic counterpart [62]. Many of the analytic results have

been conducted either at steady-state [61, 63, 64]. If time-dependence is considered it is

done so in the limit of infinite ants [65, 66, 67] or effectively includes a finite number of

ants in a continuous agent number (non-discrete) setting [62].

Although stochastic methods allow us to model random processes more accurately

and observe phenomena that do not occur from deterministic considerations alone,

the downsides of their use often come from computational or analytic difficulties.

Computationally, there are few methods through which simulations or numerical solutions

to stochastic systems can be conducted. The two most popular methods being the

stochastic simulation algorithm (SSA) [68] and finite state projection (FSP) [69]. However,

these both suffer from the curse of dimensionality which restricts their use for problems of

more than a few species (unless one has access to vast computing power). More recently,

other methods reliant on neural networks have been explored [70, 71, 72, 73] which

vastly reduce the computational burden, nevertheless this research is still in its nascent

stages. As a result, the main problem is that even though computational approaches are

available, we are limited to the computing power and methods currently available to us,

which motivates more mathematical approaches. In general, analytics are favoured since

they give both more intuition and at a reduced computational burden than simulation

based approaches. Analytically, the starting point for stochastic modelling of chemical

kinetics is the chemical master equation (CME), a set of coupled first-order ordinary

differential equations describing the evolution of the probability distribution in the

system of interest [8, 74]. In all but the simplest of reaction schemes the CME is difficult

to solve, even at steady-state, and where solutions are possible they often come in the

form of series expansions or the (relatively generalised) special functions that define

them ([42, 43, 75, 76] among many others). To solve the CME exactly in time is an even

more difficult task and it has only been done for a handful of systems [77, 78, 79, 80, 41].

Because of this, approximations to the CME are vital in order to extract analytics [81],

and come in a variety of forms including (but not limited to) time scale separation

[82, 83, 84, 85, 86], system size expansions [8, 87, 88, 89], Fokker-Planck equations

[8, 74, 90] and the linear mapping approximation [91].

This thesis contributes to several of the aspects mentioned above. First, it addresses

the validity of common approximations across different systems, from models of gene

expression to enzyme kinetics, and further asserts the conditions in which we expect

these approximations to hold. Secondly, we take an interest in solving and approximating

stochastic kinetics not only at steady state, but in time as well. Such transient dynamics

are often unstudied, but are of vital importance whenever a system is perturbed by

an external force requiring the system to again relax back to the steady state, and

additionally provide much more information regarding the underlying dynamical process.
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1.2 Thesis structure

This thesis is structured as follows. Chapter 2 outlines the necessary preliminaries to

understand the remaining chapters. In these preliminaries, there are introductions to

the stochastic simulation algorithm, the chemical master equations and its various

approximations used in this thesis, the finite state approximation, the delayed stochastic

simulation algorithm and transient methods to solve the chemical master equation.

Chapter 3 focuses on Hill-type propensities often used to model genetic autoregulation,

and provides an answer to the question: Under what conditions is the Hill function

propensity a valid approximation? A priori this is not known, since its derivation relies

on the deterministic rate equations, and its use in stochastic kinetics is a purely heuristic

approximation.

Chapter 4 explores the use of the unified colored noise approximation to provide a reduced

mapping of complex models of gene expression via the addition of Gaussian colored

noise on the rate parameters. For a model of cooperative auto-regulatory feedback, we

show how to appropriately choose the timescale and size of the colored noise to perform

the mapping between the full and reduced models. Importantly, we show how to include

fluctuations in the protein production rate due to multi-stage mRNA processing and

how to effectively include more complex protein degradation mechanisms in models of

autoregulation.

Chapter 5 studies why the telegraph model of gene expression has been so successful in

predicting mRNA distributions given that it neglects RNA polymerase dynamics, which

provide several key rate limiting steps. To conduct this study we use a first passage

time analysis to compare analytically determined waiting time distributions of mRNA

production between two models. The first model is a telegraph-like model, while the

second is a mechanistic model that includes the key rate limiting steps in the RNA

polymerase dynamics and deterministic elongation from nascent to mature mRNA.

The results show that such a mapping based on the first passage time admits a region

of uniquely mapped parameters where there is good correspondence between the two

models.

In Chapter 6 the Michaelis-Menten mechanism of enzyme kinetics is studied. We provide

an approximate closed-form solution to the CME describing its dynamics under a

realistic time scale separation in the rate parameters. This closed-from solution is

analysed in various regimes of the parameter space, where we observe the emergence

of transient bimodality, which corresponds to the transient occurrence of two distinct

populations over a finite time. We further extend the approximative method used on the

Michaelis-Menten mechanism to solve the more complex mechanism of ternary complex

formation, involving multiple substrates.
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In Chapter 7 we continue the theme of transient kinetics showing how one can derive an

exact time-dependent solution to Kirman’s model of ant rationality for a finite discrete

number of N ants. We show how to effectively use this solution in a practical way,

and then extend it to solve the ant rationality model for increasing degrees of model

asymmetry, and even show how it provides a semi-analytic solution to the vacillating

voter model.

Finally, in Chapter 8 we illustrate some future directions that stem from the previous

chapters, including the discovery of volume scaling laws for protein production rates

in minimal gene expression models, and an exploration on the origins of transient

bimodality in enzyme kinetics. We then conclude this thesis.



Chapter 2

Preliminaries

This chapter provides the analytical and computational framework that are necessary to

understand the following chapters. The core references for this chapter are [8, 68, 69, 81].

We begin by acquainting the reader with the stochastic simulation algorithm (SSA) in

Section 2.1, which provides the computational standard against which analytic solutions

are compared, and which is utilised in every subsequent chapter of this thesis. In

Section 2.2 we derive the chemical master equation (CME), which provides the analytic

grounding for all of the subsequent chapters, followed by a discussion on the finite state

projection (FSP) in Section 2.3, which provides an alternative to the SSA. In Section

2.4 we then introduce several relevant approximation methods often used to simplify

the CME such that it can be solved. Section 2.5 defines the delayed SSA (dSSA) and

the delayed CME (dCME) a modification of the CME that includes the presence of

deterministically delayed reactions (which are non-Markovian) and shows how one can

deal with these computationally. Such delayed reaction schemes are used in Chapter 5.

Finally, Section 2.6 reviews two analytic methods for solving the CME in time. In this

Chapter, boldface symbols indicate vectors and matrices. Note that a detailed account

of the unified colored noise approximation (UCNA) is given in Chapter 4, hence we

have not included it in these preliminaries.

2.1 Stochastic simulation algorithm

The SSA is a Monte Carlo algorithm and it is the standard tool with which we test

our analytical solutions from the CME. To set up the SSA one must first grasp what a

chemical reaction network is, and a reaction from that network is generally denoted in

the following way [8, 81],

∑
i∈S

airXi
kr−→
∑
i∈S

birXi. (2.1)

7
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with r ∈ {1, 2, . . . , R}, where R is the number of reactions. Here, S is the set of all N

species, air and bir are positive integers (and can be zero) denoting the stoichiometric

coefficients for species i in reaction r, kr is the rate at which reaction r occurs, and

Xi is a chemical species. We define the state vector n = (n1, n2, . . . , nN ) as the vector

containing the number of each species in X, i.e., ni is the number of molecule of species

Xi. The end result of the SSA is to simulate the probability distribution P (n, t), i.e.,

having n at a time t. Note that reaction rate kr is not the propensity of the reaction

(propensity defined as the probability for the reaction to occur per unit time), which will

be defined below via mass-action kinetics, but a rate constant independent of n and t.

As an example of chemical kinetics, consider a system consisting of a catalytic reaction

with two species, A and B, where A decays,

A+B
k1−→ 2A+B, A

k2−→ ∅, (2.2)

in which case,

a =
(

1 1
1 0

)
, b =

(
2 0
1 0

)
,

N = 2, R = 2 and X1 and X2 are equivalently denoted as as A and B respectively. Note

that the symbol ∅ is used to indicate a large reservoir into which A is removed from the

system [8]. It is useful to define the stoichiometric matrix S ≡ b− a, where Sij defines

the net gain or loss of species i in reaction j.

One now needs to assign the propensities with which reactions are fired to give the

chemical reaction network some dynamics. The common way to do this involves making

two key assumptions [92]: that diffusion is the fast timescale in the system and that

molecules are point particles. These two assumptions result in mass-action kinetics,

where the reaction propensities are dependent only on (1) the number of molecules

in the system and (2) the size of the system Ω, but not a spatial description of where

particles are. Further to this, since a spatial description is not needed in this regime,

the state of the system is entirely specified by the number of molecules of each reacting

species n (hence why we refer to it as the state vector). Mathematically, the propensity

for reaction r, denoted fr(n), means that the probability of reaction r firing in the

infinitesimal time interval [t, t+ dt) is fr(n)dt.

The laws of mass-action kinetics are derived from combinatorial considerations. For

example, if we have a first-order reaction A
k−→, then the propensity of this reaction is

proportional to the number of molecules of A, hence the propensity for this reaction is

simply k nA. Similarly, if one has a second-order reaction A+B
k−→ then the propensity

takes into account all combinations of A and B molecules that could interact, and is

also inversely proportional to the system size, giving the propensity to be knAnB/Ω.
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These same principles can be applied for all possible types of reactions, for example the

propensity of the reaction A+A
k−→ is knA(nA− 1)/Ω where the factor nA− 1 accounts

for the fact that in choosing a second molecule to interact with one has already been

chosen (and that if one can nA = 1 that no reaction occurs). For the example reaction

above in Eq. (2.2), the propensities are f1(n) = k1nAnB/Ω and f2(n) = k2nA. Note

zeroth-order reactions of the form ∅ k−→ imply a propensity Ω k, i.e., proportional to the

system size.

The Markov property, which is the statement that the state of the system at time t+ dt

depends only on the state of the system at time t, defines the waiting time for each

reaction to occur. Markov processes have exponentially distributed waiting times since

the differential probability, in our case fr(n)dt, for an event to occur in [t, t + dt) is

time-independent. Gillespie refers to this assignment of the reaction propensity as the

fundamental premise, since each fr(n) only depends on the current state of the system

n, therefore defining the Markov properties of the SSA [68]. Hence, the probability that

at time τ in the future any reaction will occur is,

p(τ |n, t) = f0(n) e−f0(n)τ

where f0(n) = ∑R
i=1 fr(n) is the total propensity at which reactions occur. Reaction r

will then be fired with a probability,

pr(n) = fr(n)/f0(n).

Now all of the pieces of the SSA are in place, and one could use the following pseudocode

to run the algorithm,

1. Instantiate the initial state, n = n0, of the system at t = t0.

2. Draw a reaction waiting time τ from p(τ |n, t).
3. Draw the reaction r that is fired from pr(n).
4. Update the state vector for the stoichiometry: n→ n + Sr (where Sr is the rth

column of S) and the reaction time t→ t+ τ and store the it the matrix n(t).
5. Repeat process from Step 2 until some specified maximum time T is reached and

output n(T ).

Generally, one runs many parallel simulations of the SSA and then bins the data

over the time intervals of interest giving a probability distribution that can then be

compared to those from analytic calculation. Although slightly less intuitive, it is more

computationally efficient to employ the ‘direct method’ [68] which bypasses the need to

sample the distributions p(τ |n, t) and pr(n) in favour of drawing two uniform random

variables (a result which comes from inverse transform sampling [93]). The direct method

replaces steps 2 and 3 above with,
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2. Draw two uniform random numbers, u1 and u2, from the unit interval [0, 1].
3. Assign τ = − ln(u1)/f0(n) and r = minr (∑r

i=1 fi(n) > u2f0(n)).

Throughout the thesis it is the direct method that we utilise for the SSA, and we

implement it in Julia [94]. Julia packages Catalyst.jl and DifferentialEquations.jl

[95] provide a simple and computationally fast framework with which one can simulate

the SSA. Example trajectories and histograms from the SSA for an auto-regulatory

reaction scheme are shown in Fig. 2.1(a)–(b), where the histogram shown is binned

over 104 trajectories. Follow the link here for an example of coding up the SSA in Julia

(made by the author).

2.2 Chemical master equation

The CME provides the analytic basis of this PhD thesis. Consider a chemical reaction

network (as seen previously in Eq.(2.1)) evolving from a time t→ t+dt (for infinitesimal

time interval dt). If one has the same assumptions that underlie mass-action kinetics

from the SSA, then following the fundamental premise, reaction events occur with

exponential waiting times with mass-action propensities, and one can write the following

equation for probability balance,

P (n, t+ dt) = P (n, t) +
(

R∑
r=1

P (n− Sr, t)fr(n− Sr)− P (n, t)
R∑

r=1
fr(n)

)
dt, (2.3)

where P (n, t) is the probability to have n at time t. We remind the reader that Sr is the

rth column of the stoichiometric matrix S, and is of length N , where N is the number

of reacting species. In words, this equation states that the probability of having n at

time t+ dt is the probability to have n at time t plus the net gain or loss of probability

to or from n over time interval dt. Rearranging Eq. (2.3) and taking the limit of dt→ 0
we obtain the CME,

∂tP (n, t) =
R∑

r=1
P (n− Sr, t)fr(n− Sr)− P (n, t)

R∑
r=1

fr(n). (2.4)

Note that the CME has a natural boundary at all ni = 0 since there is always zero flux

towards the states with ni < 0 given propensities of mass-action form (even the non

mass-action Hill-type propensities considered later in the thesis satisfy this condition).

There is no such upper boundary at some finite n = N unless it is imposed by the

dynamics of the reaction network itself. In general, the state space of n is infinite.

https://github.com/SciML/Catalyst.jl
https://diffeq.sciml.ai/stable/
https://github.com/jamesholehouse/SSAandFSPexample/blob/main/Julia_SSA_FSP_example.ipynb
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2.2.1 Generating functions

The method of generating functions is a very common and flexible way to solve the

CME that we apply throughout this thesis [8, 74, 81]. We now show two examples of its

application. The first example is very simple but allows one to see the elegance of the

method, while the second is more relevant to our purpose.

Example 1

Here we consider the birth-death process,

∅ r1−⇀↽−
r2
X. (2.5)

The CME describing this reaction scheme is,

∂tP (n, t) = r1P (n− 1, t) + r2(n+ 1)P (n+ 1, t)− (r1 + r2n)P (n, t). (2.6)

The generating function method introduces a generating function G(z, t) = ∑
n P (n, t)zn.

If one can then construct and solve an equation for G(z, t), P (n, t) and the factorial

moments can be calculated as follows,

P (n, t) = 1
n!∂

n
zG(z, t)|z=0,

E[(n)r] = ∂r
zG(z, t)|z=1, (2.7)

where (n)r = ∏r
x=1(n − x + 1) is the falling factorial function. We then find the raw

moments from the factorial moments via,

E[nr] =
r∑

j=1

{
r

j

}
E[(n)r], (2.8)

where
{

r
j

}
are Stirling’s numbers of the second kind [96, p. 822]. Let’s suppose the

birth-death process has reached steady state, meaning that the probability distribution

and moments are unchanging in time, i.e., ∂tP (n, t) = 0. It can be shown that the

corresponding generating function equation to Eq. (2.6) is,

r1(z − 1)G(z) + r2(1− z)∂zG(z) = 0, (2.9)
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whose solution is G(z) = Cer1z/r2 . The constant of integration C is determined by the

normalisation condition G(1) = 1, leading to C = exp(−r1/r2). Taking derivatives of

G(z) one then easily determines that the birth-death process is Poisson distributed with,

P (n, t) = 1
n!

(
r1
r2

)n

e−r1/r2 ,

E[(n)r] =
(
r1
r2

)n

,

which fully specifies the steady state solution to the birth-death process with constant

rates.

Example 2

In this example we consider a system containing a single gene that possesses two different

gene states. mRNA is produced by both of the gene states and is removed from the

system at some rate (either by degradation or dilution). This process in shown in the

reaction scheme below,

G
ρu−→ G+M, G∗ ρb−→ G∗ +M,

G
σb−⇀↽−
σu

G∗, M
d−→ ∅. (2.10)

Note that the CME for this reaction scheme has recently been solved in time (see SI of

[91]). This reaction scheme is very similar to the telegraph model of gene expression

[35, 41], aside from the fact that both gene states G and G∗ admit the production of

mRNA (whereas in the telegraph model only a single gene state is transcriptionally

active). We show here how to solve this reaction scheme at steady state. First we

write out the master equations for P0(n, t) and P1(n, t), which are the probabilities

of having n mRNA at a time t in gene states G and G∗ respectively (suppressing the

time-dependence for brevity),

∂tP0(n) = ρuP0(n− 1) + d(n+ 1)P0(n+ 1) + σuP1(n)− σbP0(n)− (ρu + dn)P0(n),
(2.11)

∂tP1(n) = ρbP1(n− 1) + d(n+ 1)P1(n+ 1)− σuP1(n) + σbP0(n)− (ρb + dn)P1(n).
(2.12)

Defining a generating function for each probability distribution, the set of generating

function equations we obtain is,

∂tG0(z) = ρu(z − 1)G0(z) + d(1− z)∂zG0(z) + σuG1(z)− σbG0(z), (2.13)

∂tG1(z) = ρb(z − 1)G1(z) + d(1− z)∂zG1(z)− σuG1(z) + σbG0(z). (2.14)
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Summing these together, and defining the total generating function over both gene

states as G(z) = G0(z) +G1(z) = ∑
n z

nP (n), we get,

∂tG(z) = (z − 1)(ρuG0(z) + ρbG1(z)) + d(1− z)∂zG(z). (2.15)

Using the fact that G1 = G − G0 and rearranging the above for G0, one can then

substitute into Eq. (2.13) or (2.14) and at steady-state we obtain,

d2(z − 1)∂2
zG(z) + (dΣ− d(z − 1)(ρb + ρu))∂zG(z) + (ρuρb(z − 1)− χ)G(z) = 0,

(2.16)

where we have defined,

Σ = σu + σb,

χ = ρuσu + ρbσb.

To solve Eq. (2.16) we observe that it has a regular singularity at z = 1 and an irregular

singularity at z = ∞. Hence, it will admit a solution of a confluent Hypergeometric

function w(z) = 1F1(a, b; z), which is defined the differential equation by,

z∂2
zw(z) + (b− z)∂zw(z)− aw(z) = 0, (2.17)

which has an irregular singularity at z = ∞ and a regular singularity at z = 0. To

map Eq. (2.16) into this form we let x = z − 1 and introduce the transformation

G(x) = eαxF (x), where we choose the value of α such to remove the z dependent term

in the coefficient of G(z) in Eq. (2.16). One finds that both α = ρu/d and α = ρb/d

are admissible (since both gives the same generating function G(z)), from which we

arbitrarily choose the former, which gives us an equation for F (x),

x∂2
xF (x) + (Σ− x(ρb − ρu))d−1∂xF (x) + (ρuΣ− χ)d−2F (x) = 0. (2.18)

A final change of variable y = (ρb − ρu)x/d gives us an equation of confluent hypergeo-

metric form, and we hence find the solution for G(z) as,

G(z) = e(z−1)ρu/d
1F1

(
σb

d
,
Σ
d

; (ρb − ρu)(z − 1)
d

)
, (2.19)

from which one can calculate the moments and probabilities. Note that there is an

additional solution to G(z) which includes a Tricomi function [97], however this is not

physically admissible since the generating function it describes does not represent a

well-defined probability function. For example, the steady state mean of the process is
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given by,

⟨n⟩ = ρuσu + ρbσb

d(σu + σb)
, (2.20)

which can be more intuitively expressed by defining the proportion of time in the u

state f = σu/(σu + σb), giving,

⟨n⟩ = f
ρu

d
+ (1− f)ρb

d
. (2.21)

2.3 Finite State Projection

2.3.1 Time-dependent FSP

The finite state projection (FSP) provides an alternate, albeit approximative, method

to the SSA for computing distributions of molecule numbers in time [69] or at steady

state [98], which can be used to verify analytic calculation. The basic idea of the

FSP is to solve the CME by matrix exponentiation. To do this, first let P(n, t) =
(P (x1(t)), P (x2(t)), . . . ) be a vector containing the probability of having each possible

configuration of the state vector n, where for xi(t) are specific instances of n. The

order of the P (xi(t)) in P(n, t) is arbitrary, so long as one remains consistent with their

placement. For example, in the one-dimensional case P(n, t) = (P (0, t), P (1, t), . . . ),
where P (n, t) is the probability of having n molecules of the single species at time t.

One can then write the CME in the following form,

∂tP(n, t) = M ·P(n, t), (2.22)

where the matrix M, which we will call the master operator, is defined by,

Mij =


−
∑R

m fm(xi) for i = j,

fm(xi) for all xj such that xj = xi + Sm,

0 otherwise.

(2.23)

Then, Eq. (2.22) can be formally solve by utilising the matrix exponential,

P(n, t) = exp(tM) ·P(n, 0). (2.24)

However, in the general case of the CME there is no upper bound on the molecule

number of each species, meaning that the state space is generally infinite, and that one

cannot calculate the matrix exponential above. Note that in the case where the state

space is naturally bounded, Eq. (2.24) provides an exact solution to the CME describing
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that problem (although it may be computationally inefficient). It is now that we employ

the ‘finite state’ projection to evade this issue. Where ni ∈ N0, specify a molecule number

‘cut-off’ or truncation in the state space for species i denoted Mi, i ∈ {1, 2, . . . , N}, then

there are K = ∏N
i Mi unique configurations in the truncated state space of n, and K is

the size of the state space. We denote the finite state master operator (of dimensions

K × K) by M̃, the set of all states in the truncated space as S̃, and we denote the

solution to the resulting truncated CME by P̃(n, t). Note that by construction the

stochastic process defined by M̃ leaks probability from all states n that are at the

upper boundary of the state space (i.e.,
∑

xi
P̃(xi, t) < 1 for t > 0), and accounting for

the error that this causes is a major aspect of the work conducted in [69]. The loss of

probability to the absorbing state is shown in the schematic in Fig. 2.1(c).

As stated in the original paper [69], by specifying an acceptable error ϵ such that if

the sum of elements in
∑K

i=1 P̃(xi, t) ≥ 1− ϵ we accept the result of the FSP, then one

could implement the following algorithm that the authors of [69] term the FSP,

1. Define the initial state of the system P̃(n, 0), acceptable error 0 < ϵ < 1, and the

set of state space truncations {Mi} for i = 1, 2, . . . , N .

2. Calculate P̃(n, t) = exp(tM̃) · P̃(n, 0), and hence evaluate s = ∑K
i=1 P̃(xi, t).

3. If s ≥ 1− ϵ then stop. Else move to step 4.

4. Increase the size of the state space in a systematic way such that Knew ≥ Kold

and return to step 2.

This fully specifies the time-dependent FSP. In common practice however, it may be

more efficient to gain a heuristic understanding of where in n that P(n, t) becomes very

small such that it can be neglected. The downsides of the FSP lie almost solely in the

curse of dimensionality—the algorithm becomes exponentially slower as K increases

due to the computation of the matrix exponential.

2.3.2 Steady state FSP

The FSP algorithm as defined above cannot be used to approximate the steady state

probability as t → ∞ since all the probability will have ‘leaked out’, i.e., when

∂tP̃s(n, t) = M̃ · P̃s(n, t) = 0. To get around this, the steady state FSP was developed

in [98], which essentially designates a state, or set of states, into which the probability

normally lost in the time-dependent FSP re-enters the system. The chosen state is

known as the designated state, shown in the schematic in Fig. 2.1(d). For a CME with

a well-defined steady state, the sum of all the elements each column of M is 0, i.e.,∑∞
j=1 Mij = 0 for all i = 1, 2, . . . ,∞. Hence, the steady state is well-defined since this

condition states that the system is ergodic and that all states remain accessible as

t→∞.
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Figure 2.1: Figure showing examples of the SSA and FSP applied to the auto-regulatory reaction
scheme in Eq. (2.26). (a) Three SSA trajectories for parameters shown on the figure. (b) Plot showing a
histogram of the SSA at t = 20 (which is at steady state) versus the result from the steady state FSP.
That the SSA is at steady state at t = 20 is verified by the very close agreement with the steady state
FSP. The histogram from the SSA is binned over 104 trajectories, whereas the designated state of the
steady state FSP is nG = 0, nP = 0 and the truncation chosen was M = 200 for the protein species (the
gene is naturally bounded and so does not require a truncation). (c) Schematic showing the truncation
of the state space in time-dependent FSP, and the flow of probability into the absorbing state (outside
of the truncated region). (d) Schematic showing the truncation of the state space in steady state FSP,
and the flow of probability into the designated state. (c) and (d) are based on Figs. 1 in [69] and [98]
respectively.

In order to give our truncated system a well-defined steady state, we must enforce the

condition
∑∞

j=1 Mij = 0 for j = 1, 2, . . . ,K on the matrix M̃. Choose a designated

state xD(t) ∈ S̃ to which the ‘leakage probability’ will be assigned to. To enforce this as

the designated state we need to modify M̃ introduced above, specifically we assign the

elements of row D such that M̃Dj = −∑i ̸=D M̃ij for j = 1, 2, . . . ,K, where the sum of

all columns in M̃ is now 0. We refer to this new matrix as M, and the steady state FSP

is reduced to solving the set of simultaneous equations defined by,

M · P̃s(n) = b, (2.25)
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where b is a vector of zeros of length K. Unlike the time-dependent FSP we must apply

the normalisation condition to fully determine the vector P̃s(n), since the row D of M
is not linearly-independent. The lack of linear-independence in this row means that one

could indeed simplify the above calculation by replacing rows D of M and b with the

normalisation condition, i.e., let MDk = 1 and bk = δkD for k = 1, 2, . . . ,K, and where

δkD is the Kronecker delta function. With these newly defined M and b the enforcement

of the normalisation condition a posteriori to solving Eq. (2.25) is no longer required.

Importantly, in conducting the steady state FSP one must have enforced any conservation

laws present in the system upon construction of M. Simply, a conservation law is

statement regarding that a certain quantity is conserved throughout the entire evolution

of the system, and each conservation law reduces the effective number of species one has

by 1. For example, consider the chemical reaction network describing the auto-regulating

gene (3 species),

G
ρu−→ G+ P, P

d−→ ∅, P +G
σb−⇀↽−
σu

G∗, G∗ ρb−→ G∗ + P. (2.26)

In this reaction scheme we make the assumption that there is only one gene copy present

that can fluctuate between two states G (unbound) and G∗ (bound). Hence, the sum of

the number of G and G∗ present at any one time is 1, i.e., nG + nG∗ = 1 (this is our

conservation law). We can then enforce this on the reaction scheme above using this

conservation law,

G
ρu−→ G+ P, P

d−→ ∅, P +G
σb−−−−−−⇀↽−−−−−−

σu(1−nG)
∅, ∅ ρb(1−nG)−−−−−−→ P, (2.27)

where we have assumed that the system size Ω = 1, and clearly there are now only 2

species (with G∗ being replaced with the conservation law). Note that although one

can do similarly for the time-dependent FSP, it is actually not required that one does

this since the initial condition explicitly enforces the conservation law. For this reaction

scheme we show the performance of the steady state FSP against the SSA in Fig. 2.1(b)

with a truncation of M = 200 for the protein number, and note that it is an order of

O(103) times faster than the SSA used in the comparison.

Similar to the time-dependent FSP, work has been done on algorithmically determining

the appropriate state space truncation [98]. In practice, it is likely more efficient to gain

a heuristic understanding of where in n that P(n, t) becomes very small such that those

states can be neglected.

A recent package has been published in Julia called FiniteStateProjection.jl that

allows one to easily conduct the FSP in time and at steady state. Follow the link here

for an example of coding the steady state FSP in Julia (made by the author). We utilise

the steady state FSP in Chapters 3 and 4 of this thesis.

https://github.com/kaandocal/FiniteStateProjection.jl
https://github.com/jamesholehouse/SSAandFSPexample/blob/main/Julia_SSA_FSP_example.ipynb
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2.4 Approximations of the CME

Having defined the CME, we see that it consists of a set of coupled first-order ODEs of

the number of the magnitude of the state space n (the number of unique state vectors

possible). For unbounded systems this set of first-order ODEs is infinite in number,

and where generating function approaches become intractable we are often forced to

consider approximations of the CME to make analytic progress. Below we detail several

approximations of the CME from the literature which we will use in this thesis.

2.4.1 Fokker-Planck and Langevin equation

It is often more convenient to deal with partial differential equations that have continuous

state variables. The Fokker-Planck equation (FPE) performs this approximation for

the CME. It consists of making two basic assumptions [8]: (1) only small jumps in the

molecule numbers occur, and (2) that P (n, t) varies slowly with respect to n. If these

assumptions are valid then it is appropriate to assume that n is a continuous vector,

and Taylor expand the RHS of Eq. (2.4) with respect to n. Let h(n) = P (n, t)fr(n),
then expanding to second order in n gives

h(n− Sr) ≈ h(n)− (Sr · ∇)h(n) + 1
2(Sr · ∇)2h(n) +O((Sr · ∇)3h(n)).

where we have used the common denotation ∇i ≡ ∂ni for i = 1, 2, . . . , N . Use of this

result gives us the so-called chemical Fokker-Planck (CFPE) equation,

∂tP (n, t) ≈ −
R∑

r=1
(Sr · ∇)fr(n)P (n, t) + 1

2

R∑
r=1

(Sr · ∇)2fr(n)P (n, t). (2.28)

If one instead continued the expansion of h ad infinitum then one recovers the Kramers-

Moyal expansion which is formally identical to the CME itself [74]. We use FPEs in

Chapter 4 to approximate the CME describing cooperative autoregulation.

In Section 4 we additionally use the Langevin equations corresponding to the FPE

whose general form is given by [57, 99, 100],

dn
dt

= S · f(n) + S ·Diag
(√

f(n)
)
· Γ(t), (2.29)

where Diag
(√

f(n)
)

is aR×R diagonal matrix with diagonal elements (
√
f1(n), . . . ,

√
fR(n)),

and Γ(t) = (Γ1(t), . . . ,ΓR(t)) is a vector where each Γi(t) is an independent Gaussian

white noise, i.e., Γi(t)Γj(t′) = δijδ(t − t′). Note that this Langevin equation is an Itô

stochastic differential equation (as opposed to a Stratonovich type).
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2.4.2 Linear noise approximation

A further approximation one can make is the linear noise approximation (LNA), which is

typically done by truncating the system size expansion (SSE) at order Ω0 [8]. Generally,

it is not as accurate as the FPE [90], but unlike the FPE it always admits a Gaussian

solution, even in time. Although normally the SSE is conducted on the CME, up to

order Ω0, the SSE of the CME and the CFPE are identical [90]. Since we do not use

higher orders of the SSE in this thesis we proceed with the derivation of the LNA from

the CFPE below.

The general idea behind the SSE is to expand the CME or CFPE around the mean as

given by the deterministic rate equations. Before introducing this expansion we first

note that the deterministic rate equations are given by [81],

dϕ(t)
dt

= S · g(ϕ(t)), (2.30)

where ϕ(t) is the vector of deterministic concentrations and g(ϕ(t)) is the vector

of macroscopic rates, which can be calculated from the propensity vector through

g(x) = limΩ→∞(Ω−1f(n,Ω)), where we have now explicitly included the dependence of

f on the system size Ω and have defined x = n/Ω as the vector of exact concentrations

(whereas ϕ(t) is the solution of Eq. (2.30), and in general x(t) ̸= ϕ(t)). We note that

generally x(t) ̸= ϕ(t) since x(t) is still a discrete quantity, whereas ϕ(t) is continuous,

although their first two moments do coincide for linear reaction networks, and some

second-order reaction networks of particular form [101]. Although the rate equations do

not account for stochastic effects, their benefit lies in their simplicity (often analytically

tractable and always computationally fast), meaning that ϕ(t) provides the ideal starting

point for the expansion of the CFPE.

We now expand the CFPE in three-steps. The first step is what van Kampen calls the

essential step [8], and it is the ansatz from which the SSE follows,

n = Ωϕ(t) + Ω1/2ξ. (2.31)

The first term in the ansatz is the molecule number corresponding to the deterministic

concentrations, while the second terms accounts for fluctuations about these values,

with the coefficient Ω1/2 simply stating that we expect fluctuations about the mean to

be of order Ω1/2. We can then further define the probability distribution in terms of ξ,

i.e.,

Π(ξ, t) =
∣∣∣∣dn
dξ

∣∣∣∣P (n, t) = ΩN/2P (n, t), (2.32)



2.4. Approximations of the CME 20

which follows from the conservation of differential area under the change of variable

n→ ξ (where N is the number of species). The second step is to realise that the partial

derivative on the LHS of the CFPE in Eq. (2.28) is taken at constant n, i.e., in the plane

defined by Ω−1/2∂tn = Ω1/2∂tϕ(t) + ∂tξ = 0. The LHS of the CFPE then becomes,

Ω−N/2∂tP (n, t) ≡ dΠ(ξ, t)
dt

∣∣∣
n=constant

= ∂tΠ(ξ, t) + (∂tξ · ∇ξ)Π(ξ, t),

= ∂tΠ(ξ, t)− Ω1/2(∂tϕ(t) · ∇ξ)Π(ξ, t),

where we have simply used chain rule on the first line. The third step is to expand the

propensities in terms of Ω. We know that in mass-action kinetics the largest power of Ω
expected in f is of order one (for a zeroth-order reaction), and all integer powers of Ω
below this are possible, hence we expand out the propensities as such [81, 8],

f(n,Ω) = Ω
∞∑

i=0
Ω−iai(n/Ω). (2.33)

Expansion of mass-action propensities in Ω then gives identification of the ai (see [102]

for mass-action identification up to second-order reactions), although this process can

be easily extended for non mass-action propensities including the Michaelis-Menten

reaction with a Hill-type propensity [103]. For the purpose of the LNA we only need the

expansion of Eq. (2.33) up to order Ω1, and one identifies a0(n/Ω) = g(ϕ(t))—which

is intuitive since we already know g(x) = limΩ→∞(Ω−1f(n,Ω)). Now one can Taylor

expand f(n,Ω) about n = Ωϕ(t),

f(n,Ω) ∼ Ωg(x) = g(ϕ(t)) + Ω−1/2(ξ · ∇ϕ)g(ϕ(t)) +O(Ω−1), (2.34)

where we have defined ∇ϕi
≡ ∂ϕi

. Finally, we use the ansatz to identify ∇ = Ω−1/2∇ξ,

where ∇ξi
≡ ∂ξi

. We can now use all these elements of the SSE in the CFPE, upon

which matching powers of Ω on either side of the transformed CFPE gives,

Ω1/2 : ∂tϕ(t) = S · g(ϕ(t)),

Ω0 : ∂tΠ(ξ, t) esc=
(
−∇ξi

ξj∇ϕj
Sirgr(ϕ(t)) + 1

2

R∑
r=1

SkrSlrgr(ϕ(t))∇ξk
∇ξl

)
Π(ξ, t),

where esc implies the use of Einstein summation convention and we have prescribed the

sum over r in line 2 since it is a contraction over three r indices. The terms of order

Ω1/2 turn out to be simply the rate equations, whereas the terms of order Ω0 describe a

linear FPE equation in Π(ξ, t). Often, one defines the expressions Jij = ∇ϕj
Sirgr(ϕ(t))

(the Jacobian of the rate equations) and Dij = ∑
r SirSjrgr(ϕ(t)) (the diffusion matrix)
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which gives the more concise form,

∂tΠ(ξ, t) esc=
(
−Jij∇ξi

ξj + 1
2Dkl∇ξk

∇ξl

)
Π(ξ, t). (2.35)

This linear FPE has a Gaussian solution, with means of ξ given by the Jacobian of the

rate equations, i.e., ∂t⟨ξ⟩ = J · ⟨ξ⟩, and a covariance matrix Cij = ⟨ξiξj⟩ determined by

the following Lyapunov equation [87, 102],

∂tC = J ·C + C · JT + D. (2.36)

Note that the formal solution of the Jacobian is given by the matrix exponential

⟨ξ(t)⟩ = exp(tJ) · ⟨ξ(0)⟩, although this can generally be simplified down to a sum of

exponentials (where the argument of the exponentials is t times the eigenvalues of

J). Using van Kampen’s definition of the steady state correlation matrix Kij(t) =
⟨(ni(0)− ⟨ni(∞)⟩)(nj(t)− ⟨nj(∞)⟩), we find in the LNA that,

Kij(t) = Ω−1⟨ξi(0)ξj(t)⟩ = Ω−1⟨ξi(0)⟨ξj(t)⟩⟩,

= Ω−1⟨ξi(0)[exp(tJ)]ijξj(0)⟩, (2.37)

where ξi(0) is some steady state fluctuation about ⟨ni(∞)⟩ at time 0, and ξj(t) is some

steady state fluctuation about ⟨nj(∞)⟩ at t (given the same initial state). Identification

of ⟨ξi(0)ξj(t)⟩ = ⟨ξi(0)⟨ξj(t)⟩⟩ simply comes from the independence of the time evolution

and the initial condition—as is clear from the Jacobian, since ∂t⟨ξ⟩ = J · ⟨ξ⟩. Diagonal

elements of K(t) are the autocorrelations, whereas off-diagonal components describe the

cross-correlations between species. Since we have calculated this assuming steady state

(even at t = 0), when exp(tJ) is known more explicitly one can then use the steady

state variances, C, calculated from J ·C + C · JT + D = 0 in place of ⟨ξi(0)ξj(0)⟩.

The LNA is used to calculate correlation functions between species in complex gene

expression models in Section 4.6.

2.4.3 Deterministic based approximations

A very common method of approximating complicated stochastic dynamics is to use

modified reaction schemes whose derivation arises from deterministic rate equations.

The two most popular methods, the quasi equilibrium approximation (QEA) and the

quasi steady state approximation (QSSA), have been used widely in approximating

enzyme kinetics (see Chapter 6 and [86]) and genetic autoregulation (see Chapters

3, 4 and [104, 105, 106, 107, 108] for some examples). They have birthed several

other approximation methods, notably the total QSSA [109] and the pre-factor QSSA

[110, 111]. Notably, the QEA, QSSA and all their derivatives are all deterministic
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approximations, which are then applied ad hoc to a stochastic model. Their usage

bypasses more rigorous concerns regarding what constitutes a fast or slow species, being

reliant only on the choice of the user in how they are integrated into a stochastic model.

Later in Chapter 3, we look at exactly when the QEA is valid in the stochastic setting

applied to autoregulation. For the moment, we introduce the QEA and QSSA, applied

to Michaelis-Menten kinetics,

S + E
k0−⇀↽−
k1
C

k2−→ E + P. (2.38)

The deterministic rate equations for the Michaelis-Menten scheme is as follows,

d[S(t)]
dt

=− k0[S(t)]([E]0 − [C(t)]) + k1[C(t)], (2.39)

d[C(t)]
dt

=− (k1 + k2)[C(t)] + k0[S(t)]([E]0 − [C(t)]), (2.40)

where terms in the [·] indicate the deterministic concentrations of the species in the

bracket. We now detail the deterministic QEA and the QSSA approximations. The

QEA proceeds by considering the reaction S + E ⇌ C to be at equilibrium for all

concentrations of [S(t)], which intuitively means that the rates of the reversible reaction

are much faster than the rate of product formation. This means the following is assumed,

k0[S(t)]([E]0 − [C(t)]) ≈ k1[C(t)],

[C(t)] ≈ [S(t)][E]0
[S(t)] + k

, (2.41)

where k = k1/k0. Note that the QEA does imply that d[S(t)]/dt ≈ 0, which effectively

states that the concentration of substrate is assumed to always take the value that

enforces the quasi-equilibrium of the reversible reaction. In other words, as the concen-

tration of [C(t)] changes due to product formation, the concentration [S(t)] changes

instantaneously to enforce the QEA. The QEA then states that,

d[P [(t)]
dt

= k2[C(t)]
QEA
≈ Vmax[S(t)]

[S(t)] + k
, (2.42)

where Vmax = k2[E]0 is the maximum possible velocity of product formation. On the

other hand, the QSSA does not assume equilibrium in the complex formation, but

instead that [C(t)] is at steady state for all concentrations of [C(t)], i.e., ∂t[C(t)] ≈ 0.

The result is the same as that of the QEA, but now k = (k1 + k2)/k0. Intuitively, the

QEA states that the reactions in the reversible reaction are fast, whereas the QSSA

states that C is a fast species. Both give similar, albeit distinct, results.
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The stochastic QEA and QSSA then proceed by asking the question: What stochastic

kinetics approximately give rise to the deterministic kinetics of the QEA or QSSA? The

most obvious choice of the user is to approximate the full reaction scheme in Eq. (6.1)

by the reduced system,

S
Vmax
n+k−−−→ ∅, (2.43)

where n is the number of molecules of S, and where we have set the system size Ω = 1
such that [S(t)] = n. From the CME of this scheme, one then determines the equation

for the evolution of the mean of n as,

∂t⟨n(t)⟩ = −
〈
Vmaxn(t)
n(t) + k

〉
≈ −Vmax⟨n(t)⟩

⟨n(t)⟩+ k
, (2.44)

where the final approximation is valid where fluctuations of ⟨n(t)⟩ are small compared

its magnitude. One can explicitly conduct a small-noise expansion [112] to verify this by

setting n(t) = ⟨n(t)⟩+ δn(t) with δn(t) = n(t)− ⟨n(t)⟩, and expanding in δn(t) to give,

〈
n(t)

n(t) + k

〉
= ⟨n(t)⟩
⟨n(t)⟩+ k

− kσn(t)2

(⟨n(t)⟩+ k)3 +O(δn3), (2.45)

where we have recognised ⟨δn(t)⟩ = 0 and the variance of n(t) as σn(t)2 = ⟨δn(t)2⟩.
Therefore, when σn(t)2 ≪ ⟨n(t)⟩ Eq. (2.44) can be assumed to a good approximation.

Since we have recovered the same equation for the evolution of the mean, we call

this the stochastic QEA (or QSSA). However, there is no guarantee that the original

reaction scheme will agree with the reduced system beyond the mean level. Conveniently,

although the validity of the Hill function has not been understood mechanistically, it

does generally, but not always, provide a good approximation of stochastic dynamics

[110].

In Chapters 3 and 6 we explore the validity of the stochastic QEA applied to autoregu-

lation and Michaelis-Menten enzyme kinetics respectively. In the case of autoregulation

we realise that the validity of the stochastic QEA is not only related to the speed of

the reversible switching rates, but also due to finite molecule number effects that are

neglected on the deterministic level.
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2.4.4 Averaging

Another approximative method based on time scale separation is ‘averaging’, for which

a comprehensive review is given in [113]. The essential idea relies on the separation of

Markov dynamics into blocks of fast dynamics and slow dynamics. What defines the

fast dynamics is that they are assumed to reach steady state immediately given any

change in the system due to the slow dynamics. This reduces the complexity of the full

system since the calculation of transient solutions is then determined by two easier to

solve problems: (1) a steady state solution for the fast dynamics and (2) a transient

solution for the slow dynamics (as a function of the steady state of the fast dynamics).

Notably, averaging is much lesser known as a time scale separation method than other

methods in the literature such as singular perturbation theory. Singular perturbation

theory allows a user to rigorously invoke a physical/biological time scale separation on

a set of ODEs or PDEs defining a the dynamics of a physical system in situations for

which regular perturbation theory fails—e.g., the three-stage model of gene expression

in conditions where mRNA is assumed to degrade on a much faster time scale than

that of the proteins (leading to ‘bursty’ protein expression, see [38, 114]). The main

differences between singular perturbation theory and averaging lie both in the regimes of

applicability of each technique and in the quantification of errors. Singular perturbation

theory requires the identification of a small expansion parameter, whereas averaging

does not require such identification—in averaging, the time scale separation is applied

to the Markov state diagram directly, where one can then identify the groups that are

effectively in a quasi steady state. This often allows one to express the dynamics of

multi-species systems in terms of an effectively reduced number of species, meaning that

analytic techniques only applicable for low-dimensional systems can be used. However,

the expansion parameter defining the singular perturbation expansion allows for error

quantification, something that cannot currently be obtained through the method of

averaging.

A substantial amount of time is given to discussing averaging in Chapter 6 in the

application to enzyme kinetics, so we will limit our discussion here. Notably, averaging

has been applied to an array of other stochastic problems, including autoregulation

[115] and multi-state gene models [116].
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2.5 Delayed SSA and CME

Biological systems are not always best modelled by Markov processes. Even though one

can generally model a system as Markovian by introducing enough Markov states, this

quickly becomes more challenging to solve. For this reason, other modelling methods

may be more efficient. One recently popular non-Markovian modelling approach are

deterministically delayed reactions [73, 117, 118, 119, 120], reactions that fire after a

deterministic time τ which can be incorporated in conjunction with Markov reactions

in a given reaction network. Although seemingly simple, their non-Markovian nature

means that we cannot use the SSA and CME as stated above and must be more careful

in our consideration of the history of the stochastic process. In the following Sections

we discuss how to modify the SSA and the CME to account for this.

2.5.1 Delayed SSA

In addition to the general reaction scheme of Markov reactions in Eq. (2.1) we now also

have a set of deterministically delayed reactions D (of length D) which we denote by,

∑
i∈D

cirXi =⇒
τr

∑
i∈D

dirXi. (2.46)

for r = 1, 2, . . . , D, where cir and dir are the stoichiometric coefficients of the delayed

reactions, and the τr under the double-lined arrow is the time of the deterministic delay

for reaction r. Further, we define the stoichiometry matrix for the delayed reactions as

σ = d− c. Now, at any time in the simulation of the full reaction scheme, including

Markovian and delayed reactions, there will be a set of M delayed reactions T =
{T1, T2, . . . , TM} ordered such that Ti < Ti+1. Given that the Markov reactions follow

the same dynamics as before (from pseudocode in 2.1 where τ and r are drawn from there

respective probability distributions), the question then becomes: How do we include the

dynamics of the delayed reactions? For example, if we have some scheduled Markov

reaction at t+ τ , but a delayed reaction will occur at T1 < t+ τ , then after we’ve fired

the delayed reaction, do we fire the Markov one too?

To answer this question, a rigorous derivation of the SSA for reaction schemes including

delays was conducted in [121], where it is found that algorithm 2 previously used in

[117] gives the correct method of incorporating delays. The essential addition is that if

T1 < t+ τ , where τ is the drawn time at which the next Markov reaction would occur,

then we reject the Markov reaction at t+ τ and simply fire the delayed reaction at T1.

This is conveniently referred to as the rejection method by [121]. The pseudocode for

this addition to the SSA (the dSSA) is then [117, 121],

1. Instantiate the initial state, n = n0, of the system at t = t0.

2. Draw a Markov reaction waiting time τ from p(τ |n, t).
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3. If T is an empty set move to Step 4. Otherwise, compare Markov reaction firing

time t+ τ to next upcoming delay reaction time T1. If t+ τ < T1 then the next

reaction will be Markovian and move to Step 4. Else, the next reaction fired is the

delay at t = T1: set r to the label corresponding to the type of delayed reaction

and move to Step 5 (and discard τ).

4. Draw the reaction r that is fired from pr(n).
5. Update the state vector for the stoichiometry. For a Markov reaction: update

n→ n + Sr (where Sr is the rth column of S) and the reaction time t→ t+ τ and

store the it the matrix n(t). For a delayed reaction: update n→ n + σr (where

σr is the rth column of σ) and the reaction time t→ T1 and store it in the matrix

n(t).
6. If the firing of Sr or σr initiates a future delayed reaction(s), then add the time(s)

Tr = t+ τr to T (and reorder T ).

7. Repeat process from Step 2 until some specified maximum time T is reached and

output n(T ).

As before, the Markov reactions can be simulated using the direct method, where one

only needs to draw two random numbers on the unit interval (see Section 2.1). For

the readers information, a package has recently been written in Julia that allows one

to easy code up the dSSA for any reaction scheme [122]. Intuitively, the reason why

this algorithm is exact comes from the memoryless property of Markov reaction, which

states that,

P (t+ τ) = P>(T1)P (t+ τ − T1), (2.47)

where T1 < t+ τ , P (t) is the probability density of a reaction firing at t and P>(t) is the

probability of the reaction firing after time t, i.e., P>(t) =
∫∞

t P (t)dt, and it is assumed

the state of the system is the same over [t, t+ τ). Hence, rejecting the drawn time τ in

Step 3 does not affect the dynamics of the Markovian reactions (providing the delayed

reaction at T1 does not effect the propensity of the Markov reactions). Explicitly, one

can verify using P (t) = f0(n) exp (f0(n)t) that Eq. (2.47) follows. In the case where the

delayed reaction at T1 does effect the propensity of the Markov reactions the scheme is

still exact, but it now accounts for the change of state caused by the delayed reactions.

We use the dSSA for modelling the elongation of nascent mRNA in Chapter 5.
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2.5.2 Delayed CME

As we have seen, the dSSA is quite different from the standard SSA, and the same is

true for the delayed CME (dCME) compared to the standard CME. In particular, one

must be much more careful in the consideration of the history of a stochastic process

with delays because the system is no longer Markovian. We explore how to account for

this non-Markovian nature below in Chapter 5, where we solve the three-state gene

model with transcriptional elongation modelled as a deterministic delay. The general

form of the dCME is quite complicated (see Eq. (3.3) in [118]), so the dCME, as for the

CME, is solved on a case-by-case basis.

2.6 Transient solutions of the CME

In this final Section of the preliminaries we detail two methods with which we solve the

CME in time later in the thesis. Solving a CME in time means that, starting from a

specified initial condition, one can see how the system relaxes towards the steady state.

This type of analysis is less common that steady state analyses for two reasons. First,

time-dependent problems are more difficult to solve and require more advanced methods.

Second, it is often assumed that biological and economical processes inhabit the steady

state. However, permanent steady states do not exist in nature, and often a greater

understanding of complex systems can be obtained by seeing how they relax towards

their steady state (information not contained in the steady state itself). Therefore, how

systems respond to changes gives us a way to access more information regarding their

underlying structure. This is the reason why perturbation experiments (experiments

that perturb the cell away from its steady state) are popular in molecular biology

[123, 124, 125].

2.6.1 Eigenfunction expansion and determination of eigenvalues

Beginning with the CME, it is clear that one can write it as a matrix equation of the

form,

∂tP(t) = M ·P(t), (2.48)

where P(t) is a vector where each element corresponds to the probability of being in a

corresponding state of n, and M is the master operator which contains all the dynamics

of the CME coming from f(n) (if unclear see Section 2.3). This form of the CME invites

us to consider an eigendecomposition of M, wherein we must calculate its eigenvalues

{−λ} and eigenfunctions Φλ. The eigenvalue equation is M ·Φλ = ∂tΦλ = −λΦλ, from
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which we find,

Φλ(t) = ϕλ exp(−λt). (2.49)

We can now choose to express P(t) in terms of these eigenfunctions,

P(t) =
∑

λ

Cλϕλ exp(−λt), (2.50)

where ϕλ are λ dependent vectors of the same dimension of P, and the Cλ are constants

determined from the initial condition(s),

P(0) =
∑

λ

Cλϕλ. (2.51)

Note that the expansion of P(t) in Φλ assumes that Φλ form a complete basis, i.e.,

that each ϕλ is a linearly-independent basis function for each λ. If one can then define

an inner product such that the ϕλ are orthonormal then one can determine the Cλ

by projecting P(0) onto each ϕλ. Additionally, from Perron-Frobenius theorem one

can state that, providing a system is ergodic [126], the eigenvalues {−λ} satisfy the

following,

λ0 = 0 < Re(λ1) ≤ Re(λ2) ≤ . . . , (2.52)

where the eigenvalue λ0 = 0 corresponds to the steady state eigenfunction,

Ps(n) = P (n, t→∞) = C0ϕ0(n). (2.53)

C0 is simply a constant determined by normalisation of the steady state distribution.

In general, it is a difficult task to solve CMEs of two species via the eigenfunction

expansion method. Now consider the one-dimensional CME describing the dynamics

of a single species. The probability vector is simply given by [P(t)]n = P (n, t), where

n denotes the number of molecules of the only available species. As we have done

previously, we can then introduce the generating function G(z, t) = ∑
n z

nP (n, t), into

which we can substitute the time-dependent form of P (n, t) from Eq. (2.50) giving,

G(z, t) =
∑

λ

Cλ exp(−λt)f(z, λ), (2.54)

f(z, λ) =
∞∑

n=0
znϕλ(n).
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One can use this form of G(z, t) in the time-dependent generating function equations

(for problems with a single species), transforming the generating function PDE for

G(z, t) in terms of z and t derivatives into an ODE in terms of z derivatives of f(z, λ)
alone, with the additional introduction of the spectral parameter λ.

There are then three aspects of this problem to solve, which depend on the specifics of

the model:

1. Can one find the set of eigenvalues {−λ} such that each f(z, λ) is a physically

admissible function.

2. Can one find the form of f(z, λ) defined by the ODE?

3. Can one define an orthogonality condition on the on the functions f(z, λ) such

that the constants Cλ can be determined?

In Chapter 7 we show how to solve Kirman’s model of ant rationality in time, as well as

more complex versions of the model, by application of the above methods.

2.6.2 General transient solution to 1D 1-step master equation

In this section we show how one can analytically solve the master equation using a method

from [127], which uses Cauchy’s integral formula on the resolvent of the master operator.

We note this same method has been derived with respect to the Laplace transform

[128, 129]. The utility of this method is that by determining the eigenspectrum of the

master operator one completely specifies the time-dependent solution for the probability

distribution of the stochastic process.

We now detail the essential steps from the method of [127]. We first point out that the

formal solution (using the matrix notation introduced above) for P(t) from Eq. (2.48)

can be given as a matrix exponential in tM,

P(t) = etM ·P(0). (2.55)

In order to calculate the eigenvectors of M necessary for the time-dependent solution,

we can now employ Cauchy’s integral formula for matrices [130], explicitly,

f(M) = 1
2πi

∮
γ
(zI−M)−1 · f(z)dz, (2.56)

where γ is a contour that contains all the eigenvalues of M and I is a M ×M identity

matrix, where M is the size of the state space (the number of unique state vectors).

Choosing f(M) = etM ·P(0), Cauchy’s integral formula then gives us the solution for

P(t),

P(t) = 1
2πi

∮
γ
ezt(zI−M)−1 ·P(0)dz, (2.57)
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where we assume the initial condition [P(0)]n = δn,n0 , i.e, the initial state is given by

the n0-th element of the state vector. Using this initial condition in Eq. (2.57) gives us,

[P(t)]n = 1
2πi

∮
γ
ezt[(zI−M)−1]n,n0dz (2.58)

We now state Cramer’s rule for matrix inverses which is given in its general form for

some matrix A as A−1 = adj(A)/det(A), where adj(A) is the adjugate matrix (formally

the transpose of the cofactor matrix) and det(A) is the determinant. In our case,

det(zI−M) =
M∏

i=1
(z + λi),

and we denote the adjugate matrix of zI−M as B(z), and the upper limit on the sum

is M since there are M eigenvalues of M. This gives us,

[P(t)]n = 1
2πi

∮
γ

ezt∏M
i=1(z + λi)

B(z)n,n0dz, (2.59)

where B(z)n,n0 is a polynomial in z and can be determined using standard methods

[130], including a simple iterative formula for the case of tridiagonal M, i.e., for a

one-step birth death process in one variable [131]. The integrand in Eq. (2.59) has M

simple poles, each centred at the eigenvalues of M, and hence where Cauchy’s integral

formula is given by, ∮
γ
f(z)dz = 2πi

∑
m

Res(f, am),

where the sum is over all poles am of f(z), our final result for [P (t)]n is given by,

[P(t)]n =
M∑

m=1

{
e−λmt B(−λm)n,n0∏

j ̸=m(λj − λm)

}
. (2.60)

This completes the derivation from [127]. We use this method in Chapters 6 and 7 to

provide a practical way to calculate time-dependent probability distributions for enzyme

kinetics and ant rationality models respectively.



Chapter 3

Revisiting the reduction of stochastic

models of genetic feedback loops with

fast promoter switching

This chapter has been published as [1] entitled Revisiting the reduction of stochastic

models of genetic feedback loops with fast promoter switching in the Biophysical Journal.

Slight modifications have been made for its inclusion in this thesis.

3.1 Abstract

Propensity functions of the Hill-type are commonly used to model transcriptional

regulation in stochastic models of gene expression. This leads to an effective reduced

master equation for the mRNA and protein dynamics only. Based on deterministic

considerations, it is often stated or tacitly assumed that such models are valid in the limit

of rapid promoter switching. Here, starting from the chemical master equation describing

promoter-protein interactions, mRNA transcription, protein translation and decay, we

prove that in the limit of fast promoter switching, the distribution of protein numbers is

different than that given by standard stochastic models with Hill-type propensities. We

show the differences are pronounced whenever the protein-DNA binding rate is much

larger than the unbinding rate, a special case of fast promoter switching. Furthermore we

show using both theory and simulations that use of the standard stochastic models leads

to drastically incorrect predictions for the switching properties of positive feedback loops

and that these differences decrease with increasing mean protein burst size. Our results

confirm that commonly used stochastic models of gene regulatory networks are only

accurate in a subset of the parameter space consistent with rapid promoter switching.

31
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3.2 Introduction

Many biochemical systems have one or more species with low molecule numbers which

implies that the dynamics can be highly noisy and consequently a deterministic

description may not be accurate [132, 133, 134, 135]. Rather a more appropriate

mathematical description is stochastic and given by the chemical master equation

[8]. When the system is made up of zero and first order reactions only, exact solutions

at both steady state and in time are occasionally possible [136]. However, many systems

have at least one bimolecular reaction and in such cases only a few exact steady state

solutions of the CME are known (see for example [42, 75, 137, 138]). A common example

of such systems are auto-regulatory feedback loops, whereby a protein produced by

a gene binds to its own promoter region to activate or suppress its own production

[11, 139, 140]. In the absence of exact solutions, we become either reliant: (i) on the

stochastic simulation algorithm (SSA) [68] or (ii) on approximations of the original

network so that analytic results become tractable [81, 89, 91]. Generally, it is a challenge

to utilise approximations to simplify the CME such that the resulting reduced equation

is representative of the true system dynamics.

A common set of approximation methods are based on time scale separation. At the

microscopic level, there are several different scenarios which can lead to time scale

separation conditions. Depending on the propensity at which reaction are fired, reactions

can be classified as either slow or fast. Depending on the reaction system, it is possible

that fast and slow reactions do not involve the same species but more commonly fast

and slow reactions share some species and hence it is generally unclear what should

be considered a fast or a slow species. Methods in the literature differ according to

the definition of what is a slow or fast species. Zeron and Santillan [141] assume that

fast species are only involved in fast reactions whereas slow species can participate

in both slow and fast reactions. In contrast, Cao et al. [142] define slow species as

those involved in slow reactions only and fast species as those participating in at least

one fast reaction and any number of slow reactions. These two approaches lead to a

reduced CME description in the slow species only. Other approaches due to Haseltine

and Rawlings [143] and Goutsias [144] model the state of the system using extents of

reaction (i.e., the count of the number of times each reaction has fired) as opposed to

molecules of species. A singular perturbation theory based method has also recently

been used to obtain a reduced stochastic description [145]. There are also several formal

results that have been mathematically proven for reaction systems in various scenarios

[146, 147, 148, 149].
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Despite the wide breadth of rigorous approaches (e.g., perturbation theory [150]), by

far the most popular approach in the literature of computational and systems biology

to obtain a reduced master equation is heuristic. The key idea is to use the results of

time scale separation for deterministic kinetics. Under the quasi-steady state or fast

equilibrium approximations, the mean concentration of a subset of species (the fast

species) reaches steady state on a much shorter time scale than the rest of the species

(the slow species). Using the deterministic rate equations it is then possible to express

the concentration of the fast species in terms of the concentration of the slow species.

This leads to a reduced chemical system composed of effective reactions with non-mass

action kinetics describing the dynamics of the slow species. The reduced chemical master

equation is then obtained by writing effective propensities analogous to the non-mass

action reaction rates obtained from the deterministic analysis. For example, Hill-type

effective protein production rates in the deterministic rate equations result if the gene

equilibrates on a much faster time scale than mRNA and protein, i.e., the fast promoter

switching limit (see for example [33] for experimental evidence of this limit), and hence

by analogy, Hill-type propensities for the protein production rates are commonly used in

stochastic simulations of gene regulatory networks [105, 106, 107, 108, 15, 151, 152, 153].

All of these studies and many others assume that such effective propensities are justified

in the limit of fast promoter switching.

The advantage of this heuristic approach is its simplicity and ease of use and this is the

main reason for its widespread use. However, clearly the use of a reduced master equation

obtained from deterministic considerations is doubtful. This has led to a number of

studies evaluating the accuracy of these reduced master equations. Thomas et al. in a

series of papers [84, 154, 155] showed using Langevin approximation theory that in the

limit of large molecule numbers and for parameters consistent with the quasi-steady

state approximation, the mean number of molecules of slow species predicted by the

reduced master equation agrees with that predicted from the master equation of the

full system but the variance of molecule number fluctuations does not. Similar results

have been shown using stochastic simulations by Kim et al. (in particular see Fig. 1 of

[156]). In contrast, Bundschuh et al. [157] have shown that the SSA corresponding to the

heuristic reduced master equation of a negative feedback loop, whereby the DNA-protein

binding reactions are assumed fast compared to the rest of the reactions and hence are

eliminated, is in very good agreement with the SSA of the full system for parameter

values specific to the phage λ system (this case is referred to as “Michaelis-Menten

system” in their paper). At first sight the results of Thomas et al. and Bundschuh et al.

may appear contradictory but in reality they are not: while the results of Thomas et

al. prove that the heuristic approach of obtaining reduced master equations cannot be

considered equivalent to the stochastic version of the quasi-steady state approximation

(see also [158]), nevertheless it is possible that the error in the predictions of the heuristic
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approach are small for specific parameter values which would be consistent with the

results of Bundschuh et al. What is clear from these studies is that more work is needed

to identify the precise regions of parameter space where the heuristic reduced master

equation of gene regulatory networks can be safely used—the study reported in this

chapter identifies such regions and hence fills a gap in the literature.

The structure of this chapter is as follows. In Section 3.3 we obtain the steady state

solution of the heuristic reduced master equation with Hill-type protein production

propensities for a non-bursty genetic feedback loop and prove that it is different than the

solution of the master equation of the genetic feedback loop in the limit of fast promoter

switching. It is then shown that the differences between the probability distributions

of protein numbers predicted by the two master equations tend to zero when the rate

of DNA-protein binding is much smaller than the unbinding rate. In contrast, the

differences maximise when the rate of DNA-protein binding is much larger than the

unbinding rate. The results are confirmed by stochastic simulations across large swathes

of parameter space. In Section 3.4 we extend the analysis to ‘bursty’ feedback loops,

which effectively account for the presence of fast degrading mRNA by modelling protein

production as occurring in geometrically distributed bursts. We finish with Section 3.5,

providing a discussion and then by concluding our results.

3.3 Model reduction for non-bursty feedback loops

3.3.1 Deterministic description and reduction

The reaction scheme for a genetic non-bursty feedback loop is given by:

G
ρu−→ G+ P, P

1−→ ∅, P +G
σb−⇀↽−
σu

G∗, G∗ ρb−→ G∗ + P. (3.1)

This models the production of proteins, their degradation, DNA-protein binding and

unbinding. For simplicity we do not have an mRNA description (though this will be

added in Section 3.4). The gene can be in one of two states: an unbound state G and a

bound state G∗. The rate of protein production depends on the gene state. Note that

here we have scaled all parameters by the protein degradation rate. Of course, given

that there is only one copy of the gene, one expects fluctuations to be important and a

stochastic model to be the most appropriate mathematical description. However, for

the moment we shall ignore the inherent stochasticity and analyze the system using a
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deterministic approach. The deterministic rate equations are:

d⟨g(t)⟩d
dt

= −σb⟨g(t)⟩d⟨n(t)⟩d + σu(1− ⟨g(t)⟩d), (3.2)

d⟨n(t)⟩d
dt

= −σb⟨g(t)⟩d⟨n(t)⟩d + σu(1− ⟨g(t)⟩d) + ρu⟨g(t)⟩d + ρb(1− ⟨g(t)⟩d)− ⟨n(t)⟩d,

(3.3)

where ⟨n(t)⟩d denotes the mean number of molecules of protein P at time t, ⟨g(t)⟩d
denotes the mean number of molecules of gene G at time t and ⟨g∗(t)⟩d denotes the

mean number of molecules of gene G∗ at time t. Since the gene can only be in either the

bound or unbound state at any one time, one may also interpret ⟨g(t)⟩d and ⟨g∗(t)⟩d as

the mean fraction of time spent in either gene state respectively. These mean molecule

numbers are calculated within the deterministic approximation (hence the subscript d)

and will generally be different than the mean molecule numbers of the system obtained

from a stochastic description of the system [102]. Note that we have used the relation

⟨g(t)⟩d + ⟨g∗(t)⟩d = 1, i.e., there is one gene copy. Note also that t is non-dimensional

time, i.e., actual time multiplied by the protein degradation rate. It can also be shown

(see Appendix A.1) that the deterministic equations Eqs. (3.2)–(3.3) agree with the

moment equations derived from the chemical master equation under the assumption of

independence of fluctuations in the protein and gene numbers.

By the fast equilibrium approximation it follows that ∂t⟨g(t)⟩d ≈ 0 (and ∂t⟨g∗(t)⟩d ≈ 0)

for all times which implies, from Eq. (3.2), that ⟨g(t)⟩d = L/(L + ⟨n(t)⟩d) where

L = σu/σb. The definition of L is used frequently throughout the text. Substituting

the latter in the right hand side of Eq. (3.3) and suppressing the time dependence (for

notational convenience) we obtain:

d⟨n⟩d
dt
≈ Lρu + ρb⟨n⟩d

L+ ⟨n⟩d
− ⟨n⟩d. (3.4)

This is an effective time evolution equation for the protein numbers, within the

deterministic approximation. This corresponds to a system with two reactions: an

effective zero-order reaction modeling the transcriptional regulation of protein production,

and a first-order protein degradation reaction. The rate of protein production is a function

of the mean number of proteins and three special cases can be distinguished: (i) If

ρu > ρb then the rate of protein production decreases with increasing ⟨n⟩d; this is the

case of negative feedback. (ii) If ρu < ρb then the rate of protein production increases

with increasing ⟨n⟩d; this is the case of positive feedback. (iii) If ρu = ρb then the rate

of protein production is independent of ⟨n⟩d and effectively there is no feedback.
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Intuitively one would expect the solution of Eq. (3.4) to be an excellent approximation

to the time evolution of the protein in the full model given by Eqs. (3.2-3.3), in the limit

of fast promoter switching, i.e., min(σu, σb) ≫ max(1, ρu, ρb). This can be explicitly

verified by calculating the ratio of gene and protein time scales, as follows. Replacing

σu by σu/ϵ and σb by σb/ϵ and taking the limit of ϵ→ 0, it is straightforward to show

that to leading order the two eigenvalues of the Jacobian matrix of the rate equations

Eqs. (3.2-3.3) evaluated at steady-state, are given by:

λ1 = −(⟨g⟩2d + L)σb

ϵ⟨g⟩d
+O(ϵ0),

λ2 = −L+ ⟨g⟩2d(ρu − ρb)
⟨g⟩2d + L

+O(ϵ), (3.5)

where ⟨g⟩d is the steady state mean gene number given by:

⟨g⟩d = L+ ρb −
√

(L− ρb)2 + 4Lρu

2(ρb − ρu) . (3.6)

For completeness and since we will use it later, the steady state mean protein number is

given by:

⟨n⟩d = 1
2

(
ρb − L+

√
(L− ρb)2 + 4Lρu

)
. (3.7)

Note that λ1,2 are negative and hence the steady state of the system is stable to small

perturbations. Furthermore Eq. (3.5) shows that as ϵ→ 0, λ1 → −∞ and λ2 tends to

a constant. Since the time scales of decay of transients in the mean protein and gene

numbers are given by the absolute of the inverse of the eigenvalues, it follows that there

is clear time scale separation in the limit of fast promoter switching. Note that in the

calculation above we assumed that ρu ̸= ρb; a similar calculation for the equality case

also leads to time scale separation.

Hence to summarise, a deterministic rate equation analysis shows that in the limit

of fast promoter switching, the reaction scheme (3.1) composed of five reactions (four

first-order reactions and a bimolecular reaction) reduces to just two reactions: an effective

zero-order reaction for the production of proteins with a rate which is a function of the

mean number of proteins and a first-order reaction modeling protein degradation.
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3.3.2 Heuristic stochastic model reduction

As mentioned in the Section A, one of the most popular stochastic model reduction

approaches consists of directly writing the chemical master equation for the reduced

reaction scheme deduced from the deterministic analysis in Section 3.3.1. In particular,

given there are n proteins in the system then we define the effective propensities:

T+(n) = Lρu + ρbn

L+ n
,

T−(n) = n, (3.8)

where T+(n)dt is the probability, given n proteins, that a protein production reaction

increasing the number of proteins by one, will occur in the time interval [t, t+ dt) and

T−(n)dt is the probability, given n proteins, that a protein degradation event reducing

the number of proteins by one will occur in the time interval [t, t+dt). These probabilities

are deduced directly from the form of the effective rate equation Eq. (3.4). Essentially

the probability per unit time for a particular reaction is taken to be the same as the

reaction rate in the effective deterministic rate equation with ⟨n⟩ replaced by n. The

chemical master equation for this reduced reaction scheme is then given by:

dPa(n, t)
dt

= T+(n− 1)Pa(n− 1, t) + T−(n+ 1)Pa(n+ 1, t)− (T+(n) + T−(n))Pa(n, t).

(3.9)

Note that we have labelled the solution of this approximate heuristic master equation

Pa to distinguish it from the solution of the full master equation P , which we discuss

in Section 3.3.4. The equations for the mean number of protein ⟨n(t)⟩a = ∑
n nPa(n, t)

can be derived from the master equation:

d⟨n⟩a
dt

= ⟨T+(n)⟩a − ⟨T−(n)⟩a,

=
〈
Lρu + ρbn

L+ n

〉
a

− ⟨n⟩a,

≈ Lρu + ρb⟨n⟩a
L+ ⟨n⟩a

− ⟨n⟩a. (3.10)

Note that in the last line we have made use of the fact that in the limit of small protein

number fluctuations n can be replaced by its average. Hence while the selection of the

propensities stems from a heuristic rule with no fundamental microscopic basis, never-

theless it guarantees equivalence between the effective equation for the time evolution of

the mean protein numbers of the heuristic master equation and the reduced deterministic
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rate equation in the limit of small protein number fluctuations (since Eq. (3.4) and

Eq. (3.10) are the same upon interchanging ⟨n⟩d by ⟨n⟩a). Note that however for the

general case of non-vanishing protein fluctuations, the mean of the heuristic stochastic

model is different than that predicted by the deterministic rate equations.

The exact solution of the one variable master equation Eq. (3.9) in steady state conditions

can be obtained using standard methods [74] and is given by:

Pa(n) = Pa(0)
n∏

y=1

T+(y − 1)
T−(y) = ρn

b [LN ]n
n![L]nM(LN,L, ρb)

, (3.11)

where N = ρu/ρb, [x]n = x(x + 1)...(x + n − 1) (the Pochhammer symbol) and M is

the Kummer confluent hypergeometric function. The definition of N is used frequently

throughout the text. To obtain insight into the discrepancies introduced by the heuristic

approach, we now study two limiting cases.

The limit of large L

This is the limit in which the rate at which proteins bind DNA is much smaller than the

unbinding rate. In this limit, the propensities given by Eq. (3.8) reduce to the simpler

form:

T+(n) ≈ ρu,

T−(n) = n. (3.12)

Hence in this limit, the propensity T+(n) is independent of n and the steady state

solution of Eq. (3.9) is simply a Poisson with mean ρu:

Pa(n) ≈ exp (−ρu)ρn
u

n! . (3.13)

Note that this derivation is intuitive but not formally precise because we have implicitly

assumed the exchange of two limits: limL→∞ limt→∞ Pa(n, t) = limt→∞ limL→∞ Pa(n, t).
A formal proof of this result starting from the exact solution Eq. (3.11) can be found in

Appendix A.3.
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The limit of small L

This is the limit in which the rate at which proteins bind DNA is much larger than the

unbinding rate. In this limit, the propensities given by Eq. (3.8) reduce to the simpler

form:

T+(n) ≈ (ρu − ρb)δ(0, n) + ρb,

T−(n) = n, (3.14)

where δ(0, n) is the Kronecker delta. Substituting these in the heuristic reduced master

equation Eq. (3.9), multiplying throughout by zn and taking the sum over n on both

sides of this equation we get the corresponding generating function equation:

∂G(z, t)
∂t

≈ ((ρu − ρb)G(0, t) + ρbG(z, t))(z − 1) + (1− z)∂G(z, t)
∂z

, (3.15)

where G(z) = ∑
n z

nPa(n, t). In steady-state, this equation has the solution:

G(z) = ρb + ρu(exp (ρbz)− 1)
ρb + ρu(exp (ρb)− 1) . (3.16)

Hence the steady state probability distribution is given by:

Pa(n) ≈


1

1+N(exp (ρb)−1) , if n = 0,
exp (−ρb)ρn

b
n!

(
1 + N−1

1+N(exp (ρb)−1)

)
, if n ≥ 1.

(3.17)

While intuitive, this proof suffers from the same looseness with exchange of limits as

with the limit of small L. An alternative rigorous proof of this result starting from the

exact solution Eq. (3.11) can be found in Appendix A.3). Eq. (3.17) is clearly not a

Poisson when there is positive or negative feedback (N ̸= 1). Note that when N = 1,

the solution is a Poisson but this case is biologically unimportant because it implies

that the rate of protein production is independent of the state of the promoter (bound

or free) and consequently there is effectively no feedback mechanism at play.

3.3.3 Conditions for the validity of heuristic stochastic model reduction

To obtain further insight into the conditions under which the heuristic model reduction

is correct, we consider the stochastic description of the non-bursty feedback loop (3.1)

but ignoring fluctuations in the protein numbers stemming from the reversible binding

of protein to gene. The neglection of protein binding fluctuations corresponds to the
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following reaction scheme:

G
ρu−→ G+ P, P

1−→ ∅, G
σbn−−⇀↽−−
σu

G∗, G∗ ρb−→ G∗ + P, (3.18)

where n in the reaction rate denotes the number of free proteins. This is a common

approximation in the literature [153, 159, 160], the rationale being that since protein

numbers are typically much larger than one hence the gain or loss of one molecule via

the gene binding reactions can be safely ignored. Given this assumption, the chemical

master equation of the non-bursty feedback loop (3.1) can be conveniently written as a

set of two coupled equations:

dP0(n, t)
dt

=ρu(P0(n− 1, t)− P0(n, t)) + ((n+ 1)P0(n+ 1, t)− nP0(n, t)) (3.19)

+ σuP1(n, t)− σbnP0(n, t),
dP1(n, t)

dt
=ρb(P1(n− 1, t)− P1(n, t)) + ((n+ 1)P1(n+ 1, t)− nP1(n, t)) (3.20)

− σuP1(n, t) + σbnP0(n, t),

where P0(n, t) is the probability that at time t there are n proteins and the gene is in

state G while P1(n, t) is the probability that at time t there are n proteins and the gene is

in state G∗. Note that time t is non-dimensional and equal to the actual time multiplied

by the protein degradation rate. The probability of n proteins is then given by P (n, t) =
P0(n, t) + P1(n, t). Defining the generating functions G0(z, t) = ∑

n z
nP0(n, t) and

G1(z, t) = ∑
n z

nP1(n, t), the generating function differential equations corresponding

to Eqs. (3.19) are given by:

∂G0(z, t)
∂t

= ρu(z − 1)G0(z, t)− (z − 1)∂G0(z, t)
∂z

+ σuG1(z, t)− σbz
∂G0(z, t)

∂z
, (3.21)

∂G1(z, t)
∂t

= ρb(z − 1)G1(z, t)− (z − 1)∂G1(z, t)
∂z

− σuG1(z, t) + σbz
∂G0(z, t)

∂z
. (3.22)

We can solve for the total generating function G(z) = G0(z) + G1(z) as follows. At

steady state ∂Gi(z, t)/∂t = 0, and utilising the relation G1(z) = G(z) − G0(z) we

can use the sum of Eq. (3.21) and (3.22) to find G0(z) = G0(G(z), G′(z), z) and

G′
0(z) = G′

0(G′(z), G′′(z), z) below

G0 = 1
ρb − ρu

(ρbG−G′), G′
0 = 1

ρb − ρu
(ρbG

′ −G′′), (3.23)
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where we suppress the z dependence for brevity. We then substitute Eq. (3.23) into

Eq. (3.21), again using G1 = G−G0, to give a second order linear differential equation

in terms of G,

((1+σb)z−1)G′′+((σu+ρb+ρu)−(ρu+(1+σb)ρb)z)G′+ρu(ρbz−σu−ρb)G = 0. (3.24)

This differential equation has two singularities, a regular singularity at z = 1/(1+σb) and

an irregular singularity at z =∞ and hence satisfies the differential equation defining

the 1F1(α;β; z) hypergeometric function up to a change in variable (otherwise known

as the Kummer function M(α;β; z)). Using a change of variable and an exponential

transformation we confirm this, and the solution is given as

G(z) = exp
(
ρu(z − 1)

1 + σb

)M(α, β, γ(z(1+σb)−1)
σb

)
M(α, β, γ) , (3.25)

where

α = ρuσb(ρb(1 + σb)− ρu + σu(1 + σb))
(1 + σb)2(ρb − ρu + ρbσb)

, β = σu + σb(ρu + σu)
(1 + σb)2 , γ = σb(ρb − ρu + ρbσb)

(1 + σb)2 .

(3.26)

In the limit of fast promoter switching, i.e., replacing σu by σu/ϵ and σb by σb/ϵ and

taking the limit of ϵ → 0, one can show that the leading-order term in the series

expansion of Eq. (3.25) in powers of ϵ is given by:

G(z) = M [LN ;L; ρbz]
M [LN ;L; ρb]

, (3.27)

where we remind the reader of definitions L = σu/σb and N = ρu/ρu. It is easy to show

that P (n) = (1/n!)dnG(z)/dzn|n=0 precisely equals Eq. (3.11).

Hence, we have shown that if protein number fluctuations due to reversible binding

can be ignored then the stochastic description agrees with that of the heuristic master

equation in the limit of fast promoter switching. This indeed gives some credibility

to the use of the heuristic master equation and explains the widespread belief, based

on stochastic simulations, that the heuristic master equation is correct in the limit of

fast promoter switching. This result is however surprising when one considers that the

heuristic is often justified from deterministic arguments, and that the deterministic

treatment ignores the sizeable fluctuations associated with gene switching.
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3.3.4 Exact stochastic model reduction

The master equation we solved in the previous section is not the exact master equation

since we have ignored protein binding fluctuations. In what follows we properly take

these into account. For the non-bursty feedback loop (3.1), the stochastic description is

given by the chemical master equation which can be conveniently formulated as a set of

two coupled equations:

dP0(n, t)
dt

=ρu(P0(n− 1, t)− P0(n, t)) + ((n+ 1)P0(n+ 1, t)− nP0(n, t)) (3.28)

+ σuP1(n− 1, t)− σbnP0(n, t),
dP1(n, t)

dt
=ρb(P1(n− 1, t)− P1(n, t)) + ((n+ 1)P1(n+ 1, t)− nP1(n, t)) (3.29)

− σuP1(n, t) + σb(n+ 1)P0(n+ 1, t).

Note that these equations are the same as Eq. (3.19) except for the terms describing

protein-gene binding, i.e., those proportional to σb and σu. In the limit of fast promoter

switching, i.e., replacing σu by σu/ϵ and σb by σb/ϵ and taking the limit of ϵ→ 0, one

can show that the steady state solution of Eqs. (3.28) (to leading-order in ϵ) is given by:

P (n) = (1 + L)Nρn
b (nρb + L(L+ n+Nρb))[1 + LN ]n

AM(1 + LN, 1 + L, ρb) +BM(2 + LN, 2 + L, ρb)
, (3.30)

where

A = (LN + n)n!(1 + L)(L+ (N − 1)ρb)[1 + L]n, (3.31)

B = (LN + n)n!(1 + LN)ρb[1 + L]n. (3.32)

See Appendix A.2 for the details of the derivation. Comparing Eq. (3.30) with the

solution of the heuristic reduced master equation Eq. (3.11), it is immediately obvious

that the two are not equal. Hence it follows that the solution to the heuristic reduced

master equation is generally different than the solution of the full master equation under

fast promoter switching conditions, contradicting a major assumption in the literature

(as discussed in the Introduction). It is straightforward to verify that the two agree only

if N = 1 in which case the protein production rate is the same in state G or G∗ and

hence there is no effective feedback mechanism.

To understand the nature of the differences between Eq. (3.11) and Eq. (3.30), we

consider two limiting cases of small and large L. Whilst results in these limits can be

obtained directly from consideration of Eq. (3.30) (see Appendix A.3) it is both simpler

and instructive to consider a different approach which does not need the exact solution

of the master equation. The advantage of this approach is that as we shall see later on,

it can be easily extended to the analysis of more complex feedback systems.
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Since ⟨g⟩ is the fraction of time spent in state G for the full stochastic model, it follows

that in the limit of small L, ⟨g⟩ is also very small, the gene spends most of its time in

state G∗ and consequently the principal reactions determining the protein dynamics

are G∗ ρb−→ G∗ + P, P
1−→ ∅. Similarly it can be argued that in the limit of large L,

⟨g⟩ ≈ 1 (the gene spends most of its time in state G) and hence the principal reactions

determining the protein dynamics are G
ρu−→ G+ P, P

1−→ ∅. The master equation for

both sets of principal reactions is trivial to solve and implies that the steady state

protein number distribution in both limits is a Poisson:

P (n) ≈ exp (−ρu)ρn
u

n! , if L→∞, (3.33)

P (n) ≈ exp (−ρb)ρn
b

n! , if L→ 0. (3.34)

A formal derivation of these results starting from the solution Eq. (3.30) can be found

in Appendix A.3.

3.3.5 Comparison of heuristic and exact reduction for small & large L

Comparing Eqs. (3.34)–(3.33) with Eq. (3.13) and Eq. (3.17), it is immediately clear

that the heuristic method of stochastic model reduction gives the correct answer in the

limit of fast promoter switching for large L but the incorrect answer for small L. Note

that time scale separation exists in both cases of small and large L (as can be verified

using Eq. (3.5)) and hence, the lack of agreement of the heuristic and exact reduction is

not expected. In Fig. 3.1 we verify that the heuristic and exact reductions agree with

each other and with the Finite State Projection (FSP) of the full master equation for

large L provided the fast promoter switching limit (large σu and σb compared to all

other parameters) is also met. This is the case for both positive and negative feedback.

Note that FSP is a computationally efficient non Monte Carlo method that solves the

master equation to any desirable degree of accuracy [69].

To further understand the differences between the two protein distributions in the limit

of small L we now look at the mean protein numbers, the Fano Factor (FF) and the

Coefficient of Variation (CV) of protein number fluctuations:

⟨n⟩ = ρb, ⟨n⟩a = ρb + (N − 1)ρb

1 +N(exp (ρb)− 1) , (3.35)

FF = 1, FFa = 1 + ρb(1−N)
1 +N(exp (ρb)− 1) , (3.36)

CV2 = 1
ρb
, CV2

a = 1− (1 + ρb)(1−N−1) exp (−ρb)
ρb

. (3.37)
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Figure 3.1: Plots comparing the probability distributions of proteins as predicted by the
heuristic reduced master equation (Pa(n)), the exact reduced master equation (P (n)) and
the full master equation in the limit of large L (PF SP (n)). L is kept constant throughout the
figure. Shaded regions indicate the solution of the full master equation Eq. (3.28) using FSP,
dashed red lines indicate the heuristic probability distribution from Eq. (3.11), and black
solid lines indicate the exact solution in the fast promoter switching limit from Eq. (3.30).
Throughout this chapter FSP is used as the benchmark for our analytic results, with a
state space truncation chosen such that the probability distributions are indistinguishable
from SSA. Going from left-to-right one can observe how Eqs. (3.11) and (3.30) correctly
describe the large L limit (here L = 25) when both σb and σu are themselves large, i.e.,
the fast promoter switching limit. The top row of plots show this for the case of positive
feedback (ρu = 0.5 and ρb = 25) and the bottom row of plots show this for negative feedback
(ρu = 25 and ρb = 0.5).

Note that the subscript a denotes calculation using Eq. (3.17) while no subscript implies

calculation using Eq. (3.34).

From Eq. (3.35) we deduce that ⟨n⟩a < ⟨n⟩ for N < 1 and ⟨n⟩a > ⟨n⟩ for N > 1. This

means that the solution of the approximate heuristic master equation underestimates the

mean for positive feedback (N < 1) and overestimates the mean for negative feedback

(N > 1). Since the deterministic rate equations also predict a steady state protein mean

of ρb for the case L→ 0 (see Eq. (3.7)) it then follows that the approximate heuristic

master equation also leads one to believe in noise-induced shifts of the mean which

actually do not exist. From Eq. (3.36) we deduce that the approximate heuristic master

equation artificially predicts sub-Poissonian (FFa < 1) fluctuations in molecule numbers

for negative feedback (N > 1) and super-Poissonian (FFa > 1) fluctuations in molecule

numbers for positive feedback (N < 1). These deviations from Poissonian behavior

are most pronounced for intermediate ρb since for small and large ρb, FFa ≈ 1. From

Eq. (3.37) we deduce that CV2
a > CV2 for N < 1 and CV2

a < CV2 for N > 1, i.e., the

approximate heuristic master equation overestimates the size of the protein number

fluctuations for positive feedback and underestimates them for negative feedback. These

observations are confirmed for positive feedback loops in Fig. 3.2. In particular note
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that in Fig. 3.2(A) the heuristic reduced master equation predicts switch-like behavior

as ρb is increased (from zero for ρb below approximately 5 to larger than zero for ρb > 5)

while the exact reduced master equation predicts no such transition for this set of

parameters—the lack of reliability in predicting the switching characteristics of positive

feedback loops is notable because previous studies [15] have used the heuristic reduced

master equation to study switching phenomena.

Figure 3.2: Plots showing the breakdown of the heuristic reduced master equation for fast
promoter switching in the limit of small L and positive feedback in steady state conditions.
The plots show the mean protein number (A), the Fano Factor of protein number fluctuations
(B) and the Coefficient of Variation squared (C) as a function of ρb. In (D) we show the
probability distribution of protein numbers corresponding to two different values of ρb. The
rest of the parameters are fixed to σu = 102, σb = 105 and ρu = 0.0002; this implies L = 10−3.
Note that min(σu, σb) ≫ max(1, ρu, ρb) and hence fast promoter switching is ensured. Note
that ⟨n⟩a, FFa and CV2

a in (A)–(C) are calculated using the solution of the heuristic master
equation Eq. (3.11) while their non-subscript versions are calculated using the solution of the
exact reduced master equation Eq. (3.30). These are in good agreement with the moments
calculated in the limit of small L and given by Eq. (3.35)–(3.37). The distributions Pa(n)
and P (n) in (D) are calculated using Eq. (3.17) and Eq. (3.34), respectively. The plots verify
the large differences between the heuristic and exact reduced master equation for positive
feedback loops (see text for discussion), as well as showing agreement between the theoretical
distribution for the exact reduced master equation and that obtained using FSP of the full
master equation Eq. (A.1).

We can also show that generally positive feedback leads to larger deviations of the

heuristic from the exact stochastic model reduction than is the case for negative feedback.

Consider strong positive feedback ρu ≪ ρb (N ≪ 1) with the additional constraint

ρu ≪ ρb exp (−ρb). From Eq. (3.35) it can then be shown that ⟨n⟩ = ρb, ⟨n⟩a ≈ 0. If

we now reverse the values of ρu and ρb such that we have strong negative feedback

then ρb is very small and N ≫ 1 then ⟨n⟩ = ρb, ⟨n⟩a ≈ 1. Clearly, |⟨n⟩ − ⟨n⟩a| is much
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larger for positive feedback than negative feedback (with ρu, ρb interchanged) and this

difference is evident in the distributions as well. Finally we compute the conditions for

the existence of a mode of the probability distribution at n = 0 using Eq. (3.34) and

Eq. (3.17) respectively:

P (1)
P (0) < 1⇒ ρb < 1,

Pa(1)
Pa(0) < 1⇒ Nρb = ρu < 1. (3.38)

This implies that if ρu < 1, ρb > 1 (a special case of positive feedback), the approximate

heuristic master equation predicts an artificial mode at n = 0 whereas if ρu > 1, ρb < 1
(a special case of negative feedback), the approximate heuristic master equation misses to

predict an actual mode at n = 0. These predictions, contrasting the differences between

the heuristic and exact model reduction for positive and negative feedback loops, are

illustrated in Fig. 3.3. Note that multiple peaks in the protein distribution are often

thought to describe switching between different phenotypes and hence of importance to

understanding cellular decision-making [161, 162]—the lack of accuracy in the heuristic

model predictions for the bimodality of the protein distribution shows that use of this

model can lead to incorrect biological predictions.
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Figure 3.3: Plots comparing the steady state protein distributions predicted by the heuristic
and exact reduced master equations for strong positive feedback (A) and strong negative
feedback (B) for the case of small L. Pa(n) is calculated using Eq. (3.11) while its subscript
version is calculated using the solution of the exact reduced master equation Eq. (3.30).
Note that the heuristic distribution (Pa(n)) predicts an artificial mode at zero for positive
feedback and misses the prediction of a mode at zero for negative feedback, in line with
the conditions Eq. (3.38). Note also that as predicted by theory, the differences between
P (n) and Pa(n) are most significant for positive feedback loops since for negative feedback
loops the differences amount to the order of a single molecule. The parameters σu = 102

and σb = 105 are fixed across both plots (implying L = 10−3) while the values of ρu and
ρb are stated on the figure. FSP distributions are indistinguishable from the theoretical
distributions shown in the figure.
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The differences between the heuristic and exact model reduction can be explained using

the results of Section 3.3.3. There we showed that the heuristic master equation has the

same solution, in the limit of fast promoter switching, as the master equation which

ignores protein fluctuations due to the reversible protein-DNA binding reaction.

First consider the case of positive feedback (Fig. 3.3A). When proteins are present in

the system there will be rapid switching between the G and G∗ states. However, in

the rare case of an extinction of proteins in the G∗ state and where protein binding

fluctuations are neglected, a transition from the bound state G∗ to unbound state G

does not release a protein (reaction scheme shown in Eq. (3.18)). The system then must

wait for a protein to be produced via the low ρu firing rate if it is to leave state G. And

hence, the waiting time for a protein to be produced at the low ρu firing rate dominates

the steady state dynamics, leading to the mode at zero (Fig. 3.3A red curve). However,

where protein binding fluctuations are included (reaction scheme shown in Eq. (3.1)),

a transition from the G∗ to G does release a protein which can immediately bind to

G (due to the high σb firing rate, meaning L≪ 1) and hence the system does not so

readily encounter an extinction of proteins (black curve Fig. 3.3A). We note that even

for the black curve there exists a non-zero probability of having zero proteins, which

accounts for the long waiting times in the extremely rare event (again note σb ≫ 1)

that the protein released from the G∗ state decays before binding to G; clearly however

this is not the dominating feature where protein binding fluctuations are taken into

consideration.

Now consider the case of strong negative feedback (Fig. 3.3B). This implies that when

a protein is produced in the active G state (now ρu is large, ρb is very small), the

rapid promoter-protein binding reaction will occur forcing the system into the G∗ state.

Where protein binding fluctuations are neglected no protein is removed upon binding

and hence the number of free proteins is still 1; the system will then flip back and

forth between the G and G∗ states, spending (on average) more time in the G∗ state

since σb ≫ σu and hence it is unlikely more than 1 protein will ever be present (due

to very small ρb and σb ≫ 1), hence the mode at n = 1 for the red curve in Fig. 3.3B.

In the event of a protein extinction the unbound state G will quickly produce another

protein in the G state. For strong negative feedback including the binding fluctuation,

the rapid promoter-protein binding reaction will instead remove a protein from the

system. Again, since it is unlikely the system will contain more than one protein (bound

or otherwise), and since the system spends much more time in the G∗ state (σb ≫ σu)

the probability distribution for the number of free proteins will have a mode at zero

(black curve Fig. 3.3B).



3.3. Model reduction for non-bursty feedback loops 48

The results stated thus far are for steady state conditions. It would also be interesting to

understand the difference between the heuristic reduced master equation Eq. (3.9) and

the exact master equation Eq. (A.1) for finite time. Since this is analytically intractable

we use stochastic simulations to explore this question. Figure 3.4 summarises the results

of such simulations for two different parameter sets: (i) ρb = ρ
(s)
b = 10 in which case

the heuristic predicts a very different steady state mean number of proteins than the

exact reduced master equation; (ii) ρb = ρ
(l)
b = 15 where the heuristic and exact reduced

master equations are indistinguishable at steady state (see Fig. 3.4(A)). In Fig. 3.4B

we show three independent trajectories of the SSA corresponding to the exact and

heuristic reduced master equations for the two parameter choices; the vast difference

between the trajectories of the heuristic and the exact for ρb = ρ
(s)
b are particularly

striking. In Fig. 3.4C we show the mean number of proteins as a function of time for

the exact and heuristic reduced master equations (solid lines) and compare with the

same predicted from the deterministic equations (dashed lines). Two observations can

be made: (i) for both parameter sets, the deterministic reaches steady state at a much

earlier time than the stochastic models; (ii) for ρb = ρ
(s)
b the heuristic predicts that

the difference in average protein numbers from the deterministic does not decrease

with time, while the exact solution predicts that the differences from the deterministic

decrease with time (compare top two sub-figures in Fig. 3.4C). In contrast, for ρb = ρ
(l)
b

both master equations predict that differences from the deterministic decrease with

time. Taken together, the results indicate that the full time-dependent solution of the

heuristic reduced master equation is an accurate reflection of the exact reduced master

equation provided ρb, the protein production rate in state G∗, is large enough so that

we are far away from the switching point of the positive feedback loop.

3.3.6 Numerical computation of the distance measure between steady state

distributions

To further understand the regions of parameter space where the heuristic and exact

reduced master equations differ, we numerically compute the Hellinger distance (HD)

between the exact steady state solution of the heuristic master equation Eq. (3.11) and

the exact steady state solution of the master equation Eq. (A.8) for a large region of

parameter space for the positive feedback loop: N varying between 10−5 and 1, and L

varying between 10−4 and 1. The results are shown as a heatmap in Fig. 3.5(A). Note

that the Hellinger distance is a distance measure between two probability distributions;

it is convenient for interpretation since the distance is a fraction, i.e., a HD value of

0 means that two distributions are identical and a HD value approaching 1 means

that the distributions are very different from one another. Specifically, a maximum

distance 1 is achieved when one of the distributions assigns probability zero to every

set to which the other distribution assigns a positive probability. In Fig. 3.5(B) we
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calculate the Hellinger distance between the steady state solution of the exact reduced

master equation Eq. (3.30) and the exact steady state solution of the master equation

Eq. (A.8). Note that there is clear time scale separation across the whole region of

parameter space used for the heatmaps as demonstrated in Fig. 3.5(E) and hence based

on conventional wisdom, one would expect the heuristic reduced master equation to be

accurate at all points in this space. However, Fig. 3.5(A) shows this is not the case—the

HD between the distributions predicted by the exact and heuristic reduced master

equations varies widely between 0 and 1. In contrast Fig. 3.5(B) shows that the HD

between the distributions predicted by the exact and exact reduced master equations

is very close to zero across all of parameter space thus verifying that the latter is the

correct form of the reduced master equation under fast promoter switching conditions.

From Fig. 3.5(A) we see that there is a trend for the HD between the heuristic and

exact master equations to decrease with increasing L which agrees with the theoretical

prediction in previous sections that the differences are significant for very small L and

disappear in the limit of large L. As well, there is a trend for the HD to decrease with

increasing N and to be particularly small close to N = 1; this agrees with the theoretical

prediction that for N = 1 the heuristic and exact precisely agree because in this case

there is no effective feedback mechanism.

In Fig. 3.5(F) we plot the protein distributions predicted by the heuristic and exact

master equations for the star points labeled (1) and (2) in Fig. 3.5(A) which are

positioned in regions of high and low HD, respectively. Note that for point (1) the

heuristic predicts that the probability that the protein numbers are zero is high whereas

the exact predicts the probability that the protein numbers are zero is very small.

Inspired by this observation, as well as the theoretical prediction of modes at zero for

small L given by Eq. (3.38), in Fig. 3.5(C) we plot a heatmap of the absolute difference

between the height of the zero modes of the exact master equation and the heuristic

reduced master equation and find that this heatmap is in very good agreement with the

heatmap for the HD shown in Fig. 3.5(A). This verifies our intuition that the differences

between the protein distributions of the two master equations is mostly due to differences

in their prediction of the probability of zero proteins at steady-state. Inspired by the

result in Appendix A.1 that the deterministic time evolution equations can be obtained

from the full master equation under the assumption ⟨n|G⟩ ≈ ⟨n⟩ (which is equivalent to

independence of protein and gene fluctuations), we plot in Fig. 3.5(D) a heatmap of

|⟨n|G⟩ − ⟨n⟩| which also shows broad similarity to that in Fig. 3.5(A).

In Fig. 3.6 we show the results of the same analysis as in Fig. 3.5 but now for the case of

negative feedback loops. As before, the largest HD between the heuristic reduced master

equation and the exact master equation is found for N far away from the trivial case of

N = 1 and for small L, in line with the theoretical predictions of the previous section.
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Figure 3.4: Plots comparing the time evolution of the heuristic reduced master equation
Eq. (3.9) and the exact master equation Eq. (A.1) for fast promoter switching conditions,
positive feedback and small L (0.1). In (A) we show the switching characteristics of the
positive feedback loop as a function of ρb for the two master equations in steady state
conditions. Here dotted lines define the values of ρ

(s)
b (subscript s for small) and ρ

(l)
b (l for

large) used throughout the rest of the figure. In (B) we plot three independent trajectories
from the SSA corresponding to the two master equations. Each trajectory shown is down-
sampled 1:100 for visual clarity. The top row corresponds to ρb = ρ

(s)
b and the bottom

row corresponds to ρb = ρ
(l)
b . In (C) we plot the mean number of proteins as a function

of time as predicted by the exact and heuristic reduced master equations (shown as solid
lines and denoted by the subscript s in the legend) and by the deterministic rate equations
(shown as dashed lines and denoted by the subscript d in the legend). The shaded regions
show one standard deviation about the mean. The moments were calculated over 2 × 103

SSA trajectories. All sub-figures compare two different parameter sets, one for small ρb

(where at steady state the heuristic and exact differ considerably) and one for large ρb

(where at steady state the differences are negligible), as indicated in Fig. 3.4(A). Note
that min(σu, σb) ≫ max(1, ρu, ρb) and hence fast promoter switching is ensured for both
parameter sets. See text for discussion.

Both the heatmaps of the absolute difference between the heights of the zero modes

(Fig. 3.6(C)) and of the absolute difference between the protein mean and the conditional

protein mean (Fig. 3.6(D)) show high correlation with the HD heatmap in Fig. 3.6(A).

The differences between the heuristic and exact protein distributions for the large HD

and small HD in Fig. 3.6(A) (star point 1, 2 respectively) are shown in Fig. 3.6(F). Note

that the differences between the two cases amount to the order of a single molecule and

are far smaller than the differences found for positive feedback (compare Fig. 3.5(F)),

verifying the theoretical predictions of the previous section, namely that the heuristic

fails worst for positive feedback.
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Figure 3.5:Quantifying the differences between the steady state protein distributions predicted
by the exact master equation Eq. (A.8), the heuristic reduced master equation Eq. (3.11)
and the exact reduced master equation Eq. (3.30) for positive feedback loops. Pe(n) denotes
the exact steady state solution of the exact master equation (i.e., the exact solution of the
reaction scheme from Eq. (3.1), see derivation in Appendix A.2) and Pa(n) denotes the
distribution from the heuristic reduced master equation. We note that Pe(n) takes the role
of PF SP used in previous figures. In (A) we show the Hellinger distance (HD) between the
predictions of the exact master equation and heuristic reduced master equation. In (B) we
show the HD between the predictions of the exact master equation and exact reduced master
equation (denoted as exact fast). (C) Shows the absolute difference between the probability
of zero protein molecules predicted by the exact master equation and the probability of
zero protein molecules predicted by the heuristic reduced master equation. (D) Shows the
absolute difference between ⟨n⟩ and ⟨n|G⟩ computed using the exact master equation. (E)
Shows that the whole region of parameter space chosen has suitable deterministic time
scale separation where τg = 1/λ1, τp = 1/λ2 and λi are the eigenvalues of the Jacobian of
the deterministic rate equations Eqs. (3.2-3.3) evaluated at steady-state. Note that it is
expected from Fig. 3.4 that the stochastic time scale separation will be much greater than
the deterministic. Parameters σu = 100, ρu = 2 × 10−4 are fixed throughout the figure,
with σb varying in the range 100 − 106 (small L) and ρb varying in the range 2 × 10−4 − 25
(positive feedback). Numbered stars in (A) indicate the two points in parameter space whose
corresponding probability distributions of protein numbers we show in (F). See text for
discussion.

3.3.7 Extending results to the case of multiple protein binding

Here we briefly treat the more general case where multiple protein molecules can bind

the promoter, a common case in nature often associated with cooperative behaviour.

The reaction scheme is an extension of (3.1) and reads:

G
ρu−→ G+ P, P

1−→ ∅,

P +G
σb−⇀↽−
σu

G∗, P +G∗ δb−⇀↽−
δu

G∗∗,

G∗∗ ρb−→ G∗∗ + P. (3.39)
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Figure 3.6:Quantifying the differences between the steady state protein distributions predicted
by the exact master equation Eq. (A.8), the heuristic reduced master equation Eq. (3.11)
and the exact reduced master equation Eq. (3.30) for negative feedback loops. In (A) we
show the Hellinger distance (HD) between the predictions of the exact master equation
and heuristic reduced master equation. In (B) we show the HD between the predictions
of the exact master equation and exact reduced master equation. (C) Shows the absolute
difference between the probability of zero protein molecules predicted by the exact master
equation and the probability of zero protein molecules predicted by the heuristic reduced
master equation. (D) Shows the absolute difference ⟨n⟩ and ⟨n|G⟩ computed using the exact
master equation. (E) Shows that the whole region of parameter space chosen has suitable
deterministic time scale separation where τg = 1/λ1, τp = 1/λ2 and λi are the eigenvalues of
the Jacobian of the deterministic rate equations Eqs. (3.2)–(3.3) evaluated at steady-state.
Note that it is expected from Fig. 3.4 that the stochastic time scale separation will be much
greater than the deterministic. Parameters σu = 100 and ρb = 2 × 10−4 are fixed throughout
the figure, with σb varying between 100 and 106 (small L) and ρu varying between 2 × 10−4

and 25 (negative feedback). Numbered stars in (A) indicate the two points in parameter
space whose corresponding probability distributions of protein numbers we show in (F). See
text for discussion.

Writing the deterministic rate equations for this system and making the assumption

of fast promoter switching such that ∂t⟨g⟩d ≈ 0, ∂t⟨g∗⟩d ≈ 0 and ∂t⟨g∗∗⟩d ≈ 0 it is

straightforward to show that the effective deterministic time evolution equation for the

protein numbers has the form:

d⟨n⟩d
dt
≈ LRρu + ρb⟨n⟩2d

(L+ ⟨n⟩d)R+ ⟨n⟩2d
− ⟨n⟩d, (3.40)
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where L = σu/σb and R = δu/δb. It follows by the same reasoning as in Section 3.3.2

that the corresponding heuristic reduced master equation for protein dynamics is given

by Eq. (3.9) with the effective propensities:

T+(n) = LRρu + ρbn
2

(L+ n)R+ n2 ,

T−(n) = n. (3.41)

In the limit of small L and R, Eq. (3.41) reduces to the effective propensities given

by Eq. (3.14) while in the limit of large L and R, Eq. (3.41) reduces to the effective

propensities given by Eq. (3.12). Hence the solutions of the heurestic master equation

in these two limits are given by Eq. (3.17) and Eq. (3.13).

By inspection of the reaction scheme (3.39) it is obvious that for small L and R, the

gene will be mostly in state G∗∗ and hence the principal reactions determining the

protein dynamics are G∗∗ ρb−→ G∗∗ + P, P
1−→ ∅. By the same reasoning, it follows that

for large L and R, the gene will be mostly in state G and the principal reactions are

G
ρu−→ G + P, P

1−→ ∅. Hence the solution of the exact master equation of (3.39) in

the limit of small and large L,R is Poisson and given by Eq. (3.34) and Eq. (3.33)

respectively. Hence all the conclusions previously reached regarding the differences between

the heuristic reduced master equation and the exact master equation for single protein

binding for the case of small and large L also hold for multiple protein binding for the

cases of small and large L,R. Note that the derivations here assume the exchangeability

of the limits of large/small L,R and large time; hence the proof here presented is not

formal but the results are the expected ones and are confirmed by simulations (see

later).

It is interesting to find the general conditions under which the heuristic reduced master

equations generally agrees with the exact. For the case of single promoter binding, we

showed in Appendix A.1 that the deterministic rate equations agreed with the mean of

the exact master equation when ⟨n⟩ = ⟨n|G⟩. Next we derive a similar condition for the

case of multiple protein binding. We start by noting that under fast promoter switching

conditions, the reactions P +G
σb−⇀↽−
σu

G∗, P +G∗ δb−⇀↽−
δu

G∗∗ are in equilibrium and hence

the deterministic rate equations yield:

⟨g⟩d = LR

⟨n⟩2d + (L+ ⟨n⟩d)R,

⟨g∗∗⟩d = ⟨n⟩2d
⟨n⟩2d + (L+ ⟨n⟩d)R. (3.42)
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Next we derive equations for the same quantities but from the exact master equation

(denoted ⟨g⟩, ⟨g∗⟩ and ⟨g∗∗⟩). Writing the master equation for the same two reversible

reactions in equilibrium, one can deduce the moment equations:

∂t⟨g⟩ = 0 = −σb⟨g⟩+ σu(1− ⟨g⟩ − ⟨g∗∗⟩), (3.43)

∂t⟨g∗∗⟩ = 0 = δb⟨n(1− g − g∗∗)⟩ − δu⟨g∗∗⟩, (3.44)

from which we can deduce:

⟨g⟩ = L(R+ ⟨n|G∗∗⟩ − ⟨n⟩)
⟨n|G⟩(R+ ⟨n|G∗∗⟩) + L(R+ ⟨n|G∗∗⟩ − ⟨n|G⟩) ,

⟨g∗∗⟩ = L(⟨n⟩ − ⟨n|G⟩) + ⟨n⟩⟨n|G⟩
⟨n|G⟩(R+ ⟨n|G∗∗⟩) + L(R+ ⟨n|G∗∗⟩ − ⟨n|G⟩) , (3.45)

where we used the definitions of conditional means: ⟨n|G⟩ = ⟨ng⟩/⟨g⟩ and ⟨n|G∗∗⟩ =
⟨ng∗∗⟩/⟨g∗∗⟩. Comparing Eq. (3.42) and Eq. (3.45), we see that they can only be equal

if the following condition is true:

⟨n|G⟩ = ⟨n|G∗∗⟩ = ⟨n⟩. (3.46)

By means of the definition of the mean in terms of conditional means ⟨n⟩ = ⟨n|G⟩⟨g⟩+
⟨n|G∗⟩⟨g∗⟩ + ⟨n|G∗∗⟩⟨g∗∗⟩, one can deduce the final condition required for the agree-

ment of the time evolution equations for the mean protein number according to the

deterministic rate equations and the exact master equation:

⟨n|G⟩ = ⟨n|G∗⟩ = ⟨n|G∗∗⟩ = ⟨n⟩. (3.47)

Since the heuristic is based on the deterministic, we expect that this condition is also an

indicator of when the heuristic and exact master equations agree. In Fig. 3.7 we verify

this intuition using simulations: when the above condition is approximately met then

the heuristic and exact master equations predict very similar distributions of protein

numbers (see Fig. 3.7(A),(C)) whereas the largest differences between the two master

equations (see Fig. 3.7(B),(D)) correlate with significant differences between the three

conditional mean protein numbers ⟨n|G⟩, ⟨n|G∗⟩, ⟨n|G∗∗⟩.
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Figure 3.7: Plots comparing the heuristic master equation (Eq. (3.9) with Eq. (3.41)) and
exact master equation predictions for the protein number distributions of a positive feedback
loop (ρu = 0.5, ρb = 20) with multiple protein binding (3.39). All calculations done using
FSP. Fast promoter switching is enforced by choosing min(σu, σb, δu, δb) ≫ max(1, ρu, ρb).
In (A)–(C) parameter values are fixed to σu = 104, σb = 104, δu = 104 and δb is varied in
the range 102 − 104. Plot (A) shows a case where the system spends most of its time in
state G, in (B) we show a case for which all states G, G∗ and G∗∗ are frequently accessed
by the system and in (C) we show a case where the state G∗∗ dominates. Sub-figure (D)
shows a case where the systems spends most of its time in state G∗. Note that the differences
between the heurestic and exact master equation are reflected in the differences between the
values of the mean number of proteins conditional on each state, with the smallest differences
occurring for cases (A) and (C), in agreement with the condition given by Eq. (3.47)
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3.4 Model reduction for bursty feedback loops

In this section we consider model reduction for feedback loops in which there is an

implicit mRNA description. It has been rigorously shown that when mRNA degrades

much quicker than proteins (a common situation for bacteria and yeast cells) then the

mRNA does not need to be explicitly described but rather implicitly manifests through

protein bursts [38]. Studies have elucidated the implications of taking into account

protein bursting on downstream pathways and shown its importance [163]. Hence we

now consider a feedback loop with an implicit mRNA description which has the effective

reaction scheme:

G
ρu−→ G+ wP, P

1−→ ∅, P +G
σb−⇀↽−
σu

G∗, G∗ ρb−→ G∗ + wP, (3.48)

where w is the protein burst size which is a random positive integer drawn from the

geometric distribution with mean b = k/dM , k is the rate at which mRNA is translated

into proteins and dM is the mRNA degradation rate. Note that the geometric form of the

protein burst distribution has been shown theoretically [164] and verified experimentally

[30].

3.4.1 Heuristic stochastic model reduction

We are interested in a reduced description of protein fluctuations in the limit of fast

promoter switching. Clearly, the effective master equation has to have the general form:

dPa(n, t)
dt

=
∞∑

i=0
(T+

i (n− i)Pa(n− i, t)− T+
i (n)Pa(n, t))

+ T−(n+ 1)Pa(n+ 1, t)− T−(n)Pa(n, t), (3.49)

where T+
i (n)dt is the probability, given n proteins, that a protein burst of size i will

occur in the time interval [t, t + dt) and T−(n)dt is the probability, given n proteins,

that a protein degradation event reducing the number of proteins by one will occur

in the time interval [t, t + dt). Next we use the deterministic rate equations to guess

the equations for T+
i (n) and T−(n). The deterministic rate equations corresponding to

(3.48) are given by:

d⟨g(t)⟩d
dt

= −σb⟨g(t)⟩d⟨n(t)⟩d + σu(1− ⟨g(t)⟩d), (3.50)

d⟨n(t)⟩d
dt

=− σb⟨g(t)⟩d⟨n(t)⟩d + σu(1− ⟨g(t)⟩d) + ρub⟨g(t)⟩d

+ ρbb(1− ⟨g(t)⟩d)− ⟨n(t)⟩d. (3.51)
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Note that these equations are the same as the deterministic rate equations for the

non-bursty case given by Eqs. (3.2-3.3) except that ρu is replaced by ρub and ρb is

replaced by ρbb; this directly follows from the definition of b as the mean protein burst

size. Assuming fast promoter switching, ∂t⟨g(t)⟩d ≈ 0, it follows that an effective reduced

rate equation for the mean protein numbers is:

d⟨n⟩d
dt
≈ Lρu + ρb⟨n⟩d

L+ ⟨n⟩d
b− ⟨n⟩d. (3.52)

The form of this effective equation combined with the fact that we know that burst size

is distributed according to a geometric distribution with mean b suggests a one-variable

master equation of the form Eq. (3.49) with effective propensities:

T+
i (n) = Lρu + ρbn

L+ n
ψi,

T−(n) = n, (3.53)

where ψi is the probability that a burst has size i which is given by bi/(1 + b)i+1. If we

denote the angled brackets with subscript a as the statistical averages calculated using

the heuristic master equation Eq. (3.49) with propensities given by Eq. (3.53) then it

follows that:

d⟨n⟩a
dt

=
∞∑

i=0
i⟨T+

i (n)⟩a − ⟨T−(n)⟩a,

= b

〈
Lρu + ρbn

L+ n

〉
a

− ⟨n⟩a,

≈ Lρu + ρb⟨n⟩a
L+ ⟨n⟩a

b− ⟨n⟩a. (3.54)

Note that this equation is the same as the reduced rate equation Eq. (3.52) (upon

replacing ⟨n⟩a by ⟨n⟩) and hence verifies that the form of the effective propensities

given by Eq. (3.53) guarantees equivalence between the effective equation for the time

evolution of the mean protein numbers of the heuristic master equation and the reduced

deterministic rate equation in the limit of small protein number fluctuations when

⟨n⟩a ≈ n.

The heuristic stochastic model given by Eqs. (3.49,3.53) is difficult to solve exactly

in steady state because there are no known general solutions for one species reaction

systems with multi-step reactions, i.e., reactions leading to the production of more

than one molecule at a time [74]. However, as we now show, provided we can assume

exchangeability of the limits of large/small L and large time then closed-form solutions

can be obtained for the steady state distributions of protein numbers.
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The limit of large L

In this limit, Eq. (3.53) reduces to the simpler form:

T+
i (n) ≈ ρuψi,

T−(n) = n. (3.55)

Substituting these in the heuristic reduced master equation Eq. (3.49), multiplying

both sides by zn and taking the sum over n on both sides of this equation we get the

generating function equation:

∂G(z, t)
∂t

≈ ρuG(z, t)
( 1

1 + b(1− z) − 1
)

+ (1− z)∂G(z, t)
∂z

, (3.56)

where G(z, t) = ∑
n z

nPa(n, t). This equation can be solved in steady state yielding

G(z) = (1− b(z − 1))−ρu which implies that:

Pa(n) = 1
n!
dnG(z)
dzn

∣∣∣∣
z=0
≈
(

b

1 + b

)n(
1− b

1 + b

)ρu Γ(ρu + n)
Γ(n+ 1)Γ(ρu)

= NB

(
ρu,

b

(1 + b)

)
, (3.57)

where NB(x, y) stands for a negative binomial distribution with parameters x, y and

mean xy/(1− y).

The limit of small L

In this limit, Eq. (3.53) reduces to the simpler form:

T+
i (n) ≈ ((ρu − ρb)δ(0, n) + ρb)ψi,

T−(n) = n, (3.58)

where δ(0, n) is the Kronecker delta. Substituting these in the heuristic reduced master

equation Eq. (3.49), multiplying both sides by zn and taking the sum over n on both

sides of this equation we get the corresponding generating function equation:

∂G(z, t)
∂t

≈ ((ρu − ρb)G(0, t) + ρbG(z, t))
( 1

1 + b(1− z) − 1
)

+ (1− z)∂G(z, t)
∂z

.

(3.59)

In steady-state, this equation has the solution:

G(z) = 1 +N(−1 + (1 + b)ρb(1− b(z − 1))−ρb)
1 +N(−1 + (1 + b)ρb) . (3.60)
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Hence the steady state probability distribution is given by:

Pa(n) ≈ 1
n!
dnG(z)
dzn

∣∣∣∣
z=0

=


1

1+N((1+b)ρb −1) , if n = 0,

NB

(
ρb,

b
1+b

)
N

N−(N−1)(1+b)−ρb
, if n ≥ 1.

(3.61)

3.4.2 Exact stochastic model reduction

To determine how accurate is the heuristic model reduction we need to compare it with

the reduction done on the exact model in the limit of fast promoter switching. Unlike the

case of a non-bursty feedback loop, the exact solution of the chemical master equation

for reaction scheme (3.48) is unknown. However, by taking the same approach as we did

in Section 3.3, it is easy to find the solution of the chemical master equation for the

case of fast promoter switching and L being either very small or very large.

The limit of fast promoter switching implies that the reaction P + G
σb−⇀↽−
σu

G∗ in the

reaction scheme (3.48) is approximately in equilibrium for all times. From the chemical

master equation for this reversible reaction one finds that the fraction of time that the

gene is ON is given by Eq. (A.6). Hence it follows that in the limit of small L, ⟨g⟩ is

also very small, the gene spends most of its time in state G∗ and consequently the only

effective reactions determining the protein dynamics are:

G∗ ρb−→ G∗ + wP,P
1−→ ∅, (3.62)

where w is the protein burst size which is a random positive integer drawn from

the geometric distribution with mean b. The chemical master equation for these two

reactions can be easily solved in steady state leading to a negative binomial distribution,

P (n) ≈ NB(ρb, b/(1 + b)). In the opposite limit of large L, ⟨g⟩ is approximately 1, the

gene spends most of its time in state G and consequently the only effective reactions

determining the protein dynamics are:

G
ρu−→ G+ wP,P

1−→ ∅. (3.63)

Solving the chemical master equation in steady state (using the generating function

method) for these two reactions leads to another negative binomial solution, P (n) ≈
NB(ρu, b/(1 + b)).
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Hence summarising the results of Sections 3.4.1 and 3.4.2, we can state that the heuristic

and exact stochastic model reduction in the limit of fast promoter switching agree for

large L (both predict a negative binomial distribution, P (n) = Pa(n) = NB(ρu, b/(1+b)))
but disagree for small L: the exact reduction predicts a negative binomial distribution,

P (n) = NB(ρb, b/(1 + b)) while the heuristic reduction predicts the different distribution

given by Eq. (3.61). These results qualitatively parallel those previously obtained for a

non-bursty feedback loop.

To further understand the differences between these two distributions for small L we

now look at the mean protein numbers, the Fano Factor and the Coefficient of Variation

of protein number fluctuations:

⟨n⟩ = bρb, ⟨n⟩a = bρb + b(N − 1)ρb

1 + ((1 + b)ρb − 1)N , (3.64)

FF = 1 + b, FFa = 1 + b+ b(1−N)ρb

1 + ((1 + b)ρb − 1)N , (3.65)

CV2 = 1 + b

bρb
, CV2

a = 1 + b

bρb
− (1 + b)−ρb(1−N−1)(1 + b+ bρb)

bρb
. (3.66)

Hence for N < 1 (positive feedback), the heuristic underestimates the mean protein

number and over-estimates the Fano Factor and the Coefficient of Variation of protein

number fluctuations and the opposite occurs when N > 1 (negative feedback). The

deterministic rate equations predict a mean of bρb (can be deduced from Eq. (3.52)

in limit of small L) which agrees with ⟨n⟩ but not with ⟨n⟩a and hence the heuristic

artificially predicts noise-induced deviations from the deterministic mean. These are

the same conclusions that we reached in Section 3.3.4 for the case of a non-bursty

feedback loop. The exact reduction predicts super-Poissonian fluctuations (FF > 1)

while the heuristic predicts the same for N < 1 and either super- or sub-Poissonian

fluctuations for N > 1 (FFa > 1 and FFa < 1 respectively). We note that the prediction

of sub-Poissonian fluctuations is a surprising illogical output of the heuristic model

since naturally the production of proteins in bursts has to lead to number distributions

which are wider than Poisson. The theoretical predictions for the mean, FF, CV are

corroborated using FSP in Fig. 3.8(A)–(C).

The relative errors (made by the heuristic reduction method) for the mean, FF and

CV2 can be computed using em = |⟨n⟩ − ⟨n⟩a|/⟨n⟩, eFF = |FF− FFa|/FF and eCVs =
|CV2 − CV2

a|/CV2, respectively. The errors for the bursty feedback loop (computed

using Eqs. (3.64-3.66)) are smaller than the errors for the non-bursty feedback loop

(computed using Eqs. (3.35-3.37)) provided the mean burst size b≫ 1. Hence a major

prediction of our theory is that bursts in protein expression generally reduce the size of

the discrepancies between heuristic and exact stochastic model reduction in the limit of

small L. This theoretical prediction is verified using FSP in Fig. 3.8(D) .
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Finally, we compute the conditions for the existence of a mode of the probability

distribution at n = 0 using the distribution obtained from the exact method P (n) =
NB(ρb, b/(1+b)) and the distribution from the heuristic reduction Eq. (3.61) respectively:

P (1)
P (0) < 1⇒ ρb <

1 + b

b
, (3.67)

Pa(1)
Pa(0) < 1⇒ Nρb = ρu <

1 + b

b
. (3.68)

This implies that if ρu < (1 + b)/b, ρb > (1 + b)/b (a special case of positive feedback),

the approximate heuristic master equation predicts an artificial mode at n = 0 whereas

if ρu > (1 + b)/b, ρb < (1 + b)/b (a special case of negative feedback), the approximate

heuristic master equation misses to predict an actual mode at n = 0.
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Figure 3.8: Plots showing the breakdown of the heuristic reduced master equation for fast
promoter switching in the limit of small L for a bursty positive feedback loop. The plots
show the mean protein number number (A), the Fano Factor of protein number fluctuations
(B) and the Coefficient of Variation squared (C) as a function of ρb and the mean burst size
b. In these plots we compare the FSP solution of the full master equation corresponding
to reaction scheme (3.48) with the FSP solution of the heuristic reduced master equation
Eq. (3.49) with Eq. (3.53); the latter is distinguished from the former by the subscript e.
These are in good agreement with the moments calculated in the limit of small L and given
by Eq. (3.64)–(3.66)—for example the means of the exact solution in (A) are very well
approximated by ⟨n⟩ = bρb. In (D) we show the relative error in the heuristic reduced master
equation’s FF computed using the data in (B) where eFF = |FFe − FFa|/FFe. Note that the
relative error decreases with increasing mean burst size b. In all cases ρu = 0.0002, σu = 100
and σb = 105 were chosen such that L is small, there is positive feedback and fast promoter
switching is guaranteed.
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3.5 Conclusion

In this chapter we have conclusively shown that heuristic stochastic models with Hill-type

propensities for transcriptional regulation are not generally valid under fast promoter

switching conditions, as commonly assumed. Rather we show that they are valid only

over a subset of parameter space consistent with the fast promoter switching assumption,

namely when the rate of protein-DNA binding reaction is much less than the unbinding

reaction. Our work shows that when this condition is not met, the protein distributions

predicted by the heuristic models can be considerably different than the true protein

distributions. These differences exist for both negative and positive feedback loops but

are particularly pronounced for the latter—in this case we have shown that the heuristic

model can predict an artificial mode at zero proteins, an incorrect switching point from

low to high protein expression as a parameter is varied, artificial deviations of the mean

number of proteins from that predicted by the rate equations and a huge overestimation

of the size of protein number fluctuations and of the Fano Factor. Surprisingly, we

found that the heuristic solution exactly corresponds to the fast gene switching limit of

the autoregulatory system that ignores protein number fluctuations due to the protein-

promoter binding reaction. Our work further builds on previous work by other authors

[157, 165, 156] but has the advantage of using theory to precisely deduce the region of

validity of the heuristic approach.

A number of open questions remain: (i) Is there a simple way of constructing a different

type of reduced stochastic model which avoids the pitfalls of the common heuristic

models and which also avoids the use of sophisticated mathematical analysis to derive

it? The requirement of simplicity is essential because typically only such methods are

widely adopted and indeed this is a main reason why the problematic heuristic reduced

stochastic models treated in this chapter are so widespread. (ii) What would be the

differences between heuristic and correctly reduced stochastic spatial models of genetic

feedback loops in the limit of fast gene switching? Would the differences between the

two models increase or decrease with the diffusion coefficient of protein molecules?

Spatial modeling of such systems is relatively rare but recent work in this direction

[166, 167, 168, 169, 48] shows that these models are richer in complex behavior than

their non-spatial counterparts and of course they are closer to reality. (iii) Say one used

a heuristic reduced stochastic model to construct a likelihood function and then use the

latter within a Bayesian approach to infer parameters of auto-transcriptional feedback

loops from experimental data: how would these differ from parameters inferred using a

likelihood built from a non-reduced model? A recent study [170] shows that inference

from moment-based approaches is very sensitive to the type of approximation used
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to construct the likelihood function and hence suggests large differences between the

parameters inferred using heuristic reduced or exact master equations. In conclusion, our

study shows that care must be exerted in the interpretation of the results of heuristic

stochastic models.



Chapter 4

Steady-state fluctuations of a genetic

feedback loop with fluctuating rate

parameters using the unified colored

noise approximation

This chapter has been published as [2] entitled Steady-state fluctuations of a genetic

feedback loop with fluctuating rate parameters using the unified colored noise approxima-

tion in the Journal of Physics A: Mathematical and Theoretical. Slight modifications

have been made for its inclusion in this thesis.

4.1 Abstract

A common model of stochastic auto-regulatory gene expression describes promoter

switching via cooperative protein binding, effective protein production in the active state

and dilution of proteins. Here we consider an extension of this model whereby colored

noise with a short correlation time is added to the reaction rate parameters—we show

that when the size and time scale of the noise is appropriately chosen it accounts for fast

reactions that are not explicitly modelled, e.g., in models with no mRNA description,

fluctuations in the protein production rate can account for rapid multiple stages of

nuclear mRNA processing which precede translation in eukaryotes. We show how the

unified colored noise approximation can be used to derive expressions for the protein

number distribution that is in good agreement with stochastic simulations. We find that

even when the noise in the rate parameters is small, the protein distributions predicted

by our model can be significantly different than models assuming constant reaction

rates.

64
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4.2 Introduction

Proteins perform a large range of cellular functions and hence it is of great interest to

understand how the genes that produce them operate. Autoregulation is a mechanism to

regulate gene expression whereby proteins expressed by a certain gene can subsequently

bind to the same gene and cause an increase or a decrease in its expression (positive

and negative feedback, respectively) [171]. Autoregulation is common; for example in E.

coli it is estimated that 40% of all transcription factors are self-regulated [11, 14].

For at least two decades, it has been known that gene expression is inherently stochastic

[172, 9], and as such the modelling of gene regulatory networks must account for this

stochasticity. Following van Kampen [8], given a system of interest, noise can be seen

as originating from two different sources: (i) noise that is inherent to the system itself

and cannot be turned off, also called internal or intrinsic noise; (ii) noise coming from

a source outside the system of interest, known as external or extrinsic noise. If we

specify a system of interest that is described by a set of reactions with constant rate

parameters, then it follows that any fluctuations in the molecule numbers must be due

to the inherent randomness in the time at which the reactions fire, and hence the noise

is intrinsic. In contrast, if we add fluctuations to the rate parameters to account for

external processes, then it follows that this noise is extrinsic. For example, if one models

mRNA transcription from a gene by a first-order reaction with a constant rate parameter

then one is only modelling intrinsic noise. However, if one adds noise to the transcription

rate to account for fluctuating numbers of polymerases and transcription factors that

are not explicitly described in the system, then one is modelling both intrinsic and

extrinsic noise sources. Note that these definitions of intrinsic and extrinsic noise are

generally different from, and not to be confused with, the definitions proposed using

dual-reporter methods in [10].

The division of noise into these two categories is of course artificial but it is useful from

a conceptual and modelling point of view. The simulation of stochastic biochemical

processes is most commonly done using the stochastic simulation algorithm (SSA) [173]

which assumes that the rate parameter of a reaction will not change in the interval

between two successive reaction events, i.e., it models intrinsic noise only. While this

may be the case in many situations, it is not generally true. This is because whenever we

have an effective reaction that lumps together a large number of intermediate reactions

(a multi-stage reaction process), we are making the inherent assumption that these

intermediate reactions occur very fast and hence naturally the effective rate parameter

is fluctuating on a fast time scale.
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Taking into account these fluctuations is however not a simple feat. The chemical master

equation (CME, [74, 8]) describing the Markov process simulated by the SSA has been

solved exactly or approximately to obtain the protein number distribution in steady-state

for a wide variety of models of autoregulation [6, 42, 75, 17, 174, 76, 91, 175, 176, 84, 151,

177, 178], provided the rate parameters are assumed to be constant. There are however a

number of studies that have analyzed stochastic models with fluctuating rate parameters.

The importance of studying these models stems from the fact that they potentially offer a

compromise between model precision (how well can the model capture the complexity of

the underlying biochemical dynamics by means of fluctuating parameters) and analytical

tractability (how easy it is to solve the stochastic model). Modifications of the linear

noise approximation (a type of Fokker-Planck approximation of the CME) incorporating

noise in the rate parameters have proved popular to approximate moments for systems

subject to small magnitudes of noise with certain properties: (i) for time-independent

Gaussian colored noise [179, 180] and (ii) more realistic lognormally distributed noise

[181]. Wentzel-Kramers-Brillouin (WKB) methods have also been utilised for cases where

the correlation time of the colored noise is tending either to zero or to infinity [182].

These methods provide probability distributions for systems where the noise on the

rate parameters is drawn from a negative binomial distribution, however their analysis

does not easily translate to finding good approximations for steady states probability

distributions where the correlation time of colored noise is neither small or large.

The focus of the present article is threefold: (i) to provide a general method by which

one can obtain analytical expressions for the steady-state protein distributions of auto-

regulatory gene circuits with fluctuating rate parameters, through the use of the unified

colored noise approximation (UCNA) [183], (ii) to use this method to investigate the

effects that extrinsic noise of different magnitude and time scales has on auto-regulatory

gene expression and (iii) to show how the colored noise formalism can be used to

describe complex models of autoregulation that involve multi-stage protein production

and multi-stage protein degradation. We note that the UCNA was previously utilised in

a gene expression context [184] for linear reaction networks that are deterministically

monostable and in which there is no feedback mechanism. Our analysis goes further,

exploring the addition of colored noise to a non-linear reaction network which expresses

deterministic bistability, whilst also incorporating intrinsic fluctuations from the core

gene expression processes.

The structure of this chapter is as follows. In Section 4.3 we introduce the cooperative

auto-regulatory reaction scheme that we will study in this article. We also show that

for non-fluctuating rate parameters, the analytical protein distribution given by the

chemical Fokker-Planck equation provides an excellent approximation of the protein

distribution solution of the CME, in the limit of fast gene switching. In Section 4.4 we
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add colored noise to each reaction in the auto-regulatory reaction scheme (assuming fast

gene switching) and use the UCNA to derive the protein number distribution solution

of the chemical Fokker-Planck equation. The solution is shown to be in good agreement

with a stochastic simulation algorithm modified to account for extrinsic noise on the

rate parameters. We also use the solution to investigate the effect that extrinsic noise

has on the number of modes of the protein distribution and clarify the limits of the

UCNA derivation, including the three main conditions which cause it to breakdown. In

Section 4.5 we extend the analysis to the limit of slow gene switching by introducing

a conditional version of the UCNA. In Section 4.6 we show two examples of how one

can successfully model complex auto-regulatory systems by means of simpler ones

with colored noise on the reaction rate parameters, here done for multi-stage protein

production and multi-stage degradation. We conclude in Section 4.7 with a discussion

of our results and further problems to be addressed on this topic.

4.3 Approximate solution for autoregulation with non-fluctuating

rates

We consider the reaction scheme for a genetic non-bursty cooperative feedback loop,

where for simplicity we neglect the presence of mRNA:

G
ρu−→ G+ P, G∗ ρb−→ G∗ + P, G+ 2P σb−⇀↽−

σu

G∗, P
d−→ ∅. (4.1)

The reactions G
ρu−→ G+ P and G∗ ρb−→ G∗ + P model the production of protein P in

each gene state, G+ 2P σb−⇀↽−
σu

G∗ models the binding and unbinding of the gene to the

proteins (with cooperativity 2), and P
d−→ ∅ models the dilution/degradation of proteins

inside the cell. For simplicity we assume that there is only one gene copy present in the

system and it can be in one of two states, G or G∗, at any one time (some models in the

literature consider more states than two [185, 186, 187]). Note also that the reaction

modelling protein binding to the gene is to be understood as an effective reaction in

cases where the protein binds to enhancer regions rather than directly to the promoter

[188]. Before considering the addition of colored noise to the reaction rate parameters

above, we first consider the solution with constant rate parameters to provide a reference

point for approximations made in Section 4.4, and to clarify the approximation of a

CME by a one variable chemical Fokker-Planck equation (FPE).

The CME for the reaction scheme in Eq. (4.1) does not have a known exact solution,

even at steady-state for constant reaction rate parameters, and so approximations

are necessary. Note that in what follows, we will use the terminology “reaction rate

parameters” and “rates” interchangeably. We first consider the limit of fast gene
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switching—i.e., the frequency of gene activation and inactivation events is much larger

than the frequency of any other reaction in the system. Later in Section 4.5 we will discuss

approximations for the slow switching limit. Where [g∗] and [g] are the deterministic

mean number of bound and unbound gene respectively and [n] is the mean protein

number, the rate equations for the reaction scheme in Eq. (4.1) are:

d[g]
dt

= σu[g∗]− σb

Ω2 [g][n]2, (4.2)

d[n]
dt

= 2σu[g∗]− 2σb

Ω2 [g][n]2 + ρu[g] + ρb[g∗]− d[n], (4.3)

where [g] + [g∗] = 1. For clarity we state the units of each rate parameter: ρu, ρb, d

and σu have units of s−1, and σb has units of Volume2 · s−1. This ensures a matching

of the units with the left hand side of Eqs. (4.2–4.3), which has units of s−1. In the

fast switching limit, the gene rapidly equilibrates to quasi-steady state conditions, i.e.,

d[g]/dt ≈ d[g∗]/dt ≈ 0 and hence the deterministic rate equation for mean protein

number reduces to a much simpler form:

d[n]
dt

= Lρu + ρb([n]/Ω)2

L+ ([n]/Ω)2 − d[n], (4.4)

where L = σu/σb. Note that the reaction scheme here described exhibits deterministic

bistability over some regions of the parameter space. This equation is consistent with

a birth-death process where proteins are produced via a reaction with a rate that is

dependent on the number of proteins and are destroyed by a first-order reaction [1].

The CME for this reduced process is given by:

dPa(n, t)
dt

= T+(n− 1)Pa(n− 1, t) + T−(n+ 1)Pa(n+ 1, t)− (T+(n) + T−(n))Pa(n, t),

(4.5)

where Pa(n, t) is the probability that at a time t there are n proteins in the system; T+(n)
and T−(n) are the propensities of protein production and degradation respectively. The

subscript a denotes that this is the probability for the reduced system, an approximate

solution to the master equation of the full system. T+(n)dt is the probability, given n

proteins are in the system, that a protein production reaction occurs, increasing the

protein number of the system by 1, in the time interval [t, t+dt). Similarly, T−(n)dt is the

probability, given n proteins are in the system, that a protein degradation event occurs,

decreasing the protein number by 1, in the time interval [t, t+ dt). These propensities
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are given by:

T+(n) = ρuL+ ρb(n/Ω)2

L+ (n/Ω)2 , (4.6)

T−(n) = dn. (4.7)

These propensities are deduced directly from the form of the effective rate equation in

Eq. (4.4). Essentially, the probability for a particular reaction per unit time is taken

to be the same as the reaction rate in the effective deterministic rate equation with

[n] replaced by n. We emphasise that while this appears to be a heuristic rule with

no apparent fundamental microscopic basis, it has been shown that the reduced master

equation based on it provides an accurate approximation to the SSA of the full reaction

system in fast gene switching conditions provided the low protein number states are

rarely visited [76, 1] .

The exact steady state solution of the one variable master equation given by Eq. (4.5)

can be found using standard methods [74]:

Pa(n) = Pa(0)
n∏

z=1

T+(z − 1)
T−(z) , (4.8)

where Pa(0) is the steady state probability evaluated at n = 0 (acting effectively here

as a normalisation constant). We can further approximate the reduced master equation

in Eq. (4.5) by a Fokker-Planck equation [189, 8, 74]:

∂P (n, t)
∂t

= − ∂

∂n

(
a1(n)P (n, t)

)
+ 1

2
∂2

∂n2
(
a2(n)P (n, t)

)
, (4.9)

where a1(n) and a2(n) are the first two jump moments, given by a1(n) = T+(n)−T−(n)
and a2(n) = T+(n) + T−(n) respectively, and P (n, t) denotes the FPE solution (a

notation used throughout this chapter). The purpose of this further approximation by

means of a FPE will be made clear in Section 4.4.1. Eq. (4.9) has a steady state solution

of the form [8]:

P (n) = N

T+(n) + T−(n) exp
(
2
∫ n T+(z)− T−(z)

T+(z) + T−(z) dz
)
, (4.10)

where N is a normalisation constant. Although the integral in the exponent of Eq. (4.10)

can be solved exactly with propensities of the form of Eq. (4.6) and Eq. (4.7) since it

is the integral of the ratio of two cubic polynomials, the solution is too complicated

to be detailed here. The approximations made by the FPE approximation are that

(i) fluctuations in the protein number are small and (ii) we are in the fast switching

regime between the gene states. Fig. 4.1 compares the FPE solution Eq. (4.10) with
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the solution of the heuristic CME in Eq. (4.8) and the solution of the full CME of the

reaction scheme in Eq. (4.1) using the finite space projection method (FSP) [69]. Note

that provided the state space is truncated large enough, the FPE solution matches

the solution of the heuristic CME almost exactly. Clearly, when gene switching is fast

(bottom plot of Fig. 4.1) all three solutions agree with each other. However, when gene

switching is not fast (top and middle plots on Fig. 4.1) both the reduced CME and FPE

solutions are a poor approximation of the true distribution from FSP.
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Figure 4.1: Comparison of the heuristic reduced master equation solution from Eq. (4.8) (red dots), the
FPE solution from Eq. (4.10) (black line) and the solution of the full cooperative network using FSP
(green shaded region). Shared parameters in each plot are ρu = 50, ρb = 400, Ω = 200 and d = 1. The
FSP gives the exact solution for a truncated state space chosen such that the neglected probability
mass is negligible. The top plot shows distributions for the case σu = σb = 5, where clearly the heuristic
master equation and FPE solutions are a poor approximation of the FSP. The middle plot shows
distributions for the case σu = σb = 50 where we can observe a convergence of the heuristic master
equation and FPE solutions towards the FSP solution. The bottom plot shows excellent agreement of the
FSP with the heuristic master equation and FPE solutions for fast switching where σu = σb = 5 × 103.
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4.4 Accounting for fluctuating rates using the UCNA

Fluctuating rate parameters can be used to include a description of processes not

explicitly taken into account in the formulation of a model. In Fig. 4.2 we illustrate this

idea. In this section, we add fluctuations to the rate parameters of the FPE description

derived earlier and use the UCNA to obtain a new effective FPE that is valid when the

time scale of the noise on the rates is either very small or very large. We remind the

reader that in this section we consider gene switching to be fast, and we consider the

case of slow switching in Section 4.5.

mRNA

Ribosomes

+
Enzyme

Complex

Figure 4.2: Illustration of the cooperative auto-regulatory reaction scheme, with colored noise included
on each individual reaction. For the case of non-fluctuating rates explored in Section 4.3 the noise terms,
ηi, on the rate parameter can be set to zero. Where colored noise is included in Section 4.4 these noise
terms are not set to zero. The addition of noise onto rate parameters can be thought of as accounting
for processes that are not explicitly included in the gene expression model. Here we show two examples,
where colored noise on the rate parameters of the reduced model can be used to account for mRNA
number fluctuations during protein translation, or the degradation of proteins via an enzyme catalytic
mechanism.

4.4.1 Fluctuating degradation rate

We begin by considering the case of a fluctuating degradation rate. These fluctuations

could for example stem from details of the degradation machinery that are not explicitly

described in the model, e.g multi-step degradation mediated by enzymatic reactions.

The equivalent Langevin equation to the Fokker-Planck equation from Eq. (4.9) using

the propensities from Eqs. (4.6) and (4.7) is given by [100, 8]:

dn

dt
= ρuL+ ρb(n/Ω)2

L+ (n/Ω)2 − dn+
√
ρuL+ ρb(n/Ω)2

L+ (n/Ω)2 + dn · Γ(t), (4.11)
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where Γ(t) is Gaussian white noise with zero mean and correlator ⟨Γ(t)Γ(t′)⟩ = δ(t− t′).
Now we introduce a fluctuating degradation rate by setting d = d0(1+η(t)), where η(t) is

Gaussian colored noise with a mean of zero and correlator ⟨η(t)η(t′)⟩ = (D/τ) exp(−|t−
t′|/τ) [183, 190]. Here, τ is the correlation time of the colored noise, D/τ is the noise

strength (the variance of fluctuations) and d0 is the mean degradation rate. Since D/τ is

the noise strength, i.e., D scales the noise strength at constant τ , we occasionally refer

to D itself as the noise strength (where τ is a fixed parameter). In the limit of τ → 0
colored noise becomes white noise since limτ→0⟨η(t)η(t′)⟩ = Dδ(t− t′). Note that η(t)
must satisfy |η(t)| ≪ 1 such that d is a positive quantity (and hence admits physical

interpretation as a rate parameter). The inclusion of colored noise can be approximated

by the following two component system [183]:

dn

dt
= ρuL+ ρb(n/Ω)2

L+ (n/Ω)2 − d0(1 + η)n+
√
ρuL+ ρb(n/Ω)2

L+ (n/Ω)2 + d0 n · Γ(t), (4.12)

dη

dt
= −1

τ
η + 1

τ
θ(t), (4.13)

where θ(t) is Gaussian white noise with zero mean and correlator ⟨θ(t)θ(t′)⟩ = 2Dδ(t−t′),
and the time dependence on the protein number n(t) and noise η(t) is suppressed for

notational convenience. Note that in the argument of the square root above we have

replaced η(t) by its mean of zero; this constitutes a mean-field type of approximation,

and is useful such that one can solve Eqs. (4.12)–(4.13) analytically—however, where

the noise is small, i.e., η(t) ≪ 1, this is generally a good approximation since d ∼ d0

(however, this is not always true as explored in Condition 3 in Section 4.4.4). Note that

we also use this mean-field assumption in Sections 4.4.2 and 4.4.3. For transparency, we

rewrite Eqs. (4.12)–(4.13) as:

dn

dt
= h(n) + g1(n)η + g2(n)Γ(t), (4.14)

dη

dt
= −1

τ
η + 1

τ
θ(t), (4.15)

with

h(n) = ρuL+ ρb(n/Ω)2

L+ (n/Ω)2 − d0n, (4.16)

g1(n) = −d0n, (4.17)

g2(n) =
√
ρuL+ ρb(n/Ω)2

L+ (n/Ω)2 + d0 n. (4.18)
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In order to approximately solve Eqs. (4.14)–(4.15) we next utilise the UCNA to obtain

reduced Langevin equations when the noise η is either very fast or very slow. For

completeness, we present a non-rigorous but intuitive proof of the UCNA along the lines

found in [183] which essentially consists of a direct adiabatic elimination on the stochastic

differential equations (SDEs) in Eqs. (4.14)–(4.15). For a more rigorous derivation of a

UCNA-like FPE we advise reader to read the seminal work of Fox, who introduced a

functional calculus approach to the study of colored noise SDEs [191, 192, 193, 194]. A

review of the differing UCNA-like derivations can be found in [195].

It has been discussed in [183, 195] that the adiabatic elimination we employ below is

exact for τ → 0 (white noise) or τ →∞ (highly correlated noise) but that it should give

a useful approximation for intermediate values of τ . We note that the theory provided

by Roberts et al. [182] does not provide such a result as they consider separately the

cases of τ → 0 and τ →∞. For the biological applications we consider in Section 4.6

the limit of τ → ∞ is not of interest, and we will later focus on the limit of τ small,

although the derivation shown here holds for large τ too. First, where we use overdots

to represent derivatives with respect to time t, one should proceed in rearranging Eq.

(4.14) for η:

η(n, ṅ) = 1
g1(n)(ṅ− h(n)− g2(n)Γ(t)). (4.19)

In what follows we will utilise a mean-field approximation (denoted by the subscript

mf) to approximately calculate the time derivative of η(n, ṅ). We start by defining the

mean-field approximation of η(n, ṅ) as:

ηmf (nmf , ṅmf ) = 1
g1(nmf )(ṅmf − h(nmf )). (4.20)

Taking the time derivative with respect to non-dimensional time t̂ = t/τ (denoted by

the overdot) we obtain:

η̇mf = 1
g1(nmf )

(
h(nmf )g′

1(nmf )
g1(nmf ) − h′(nmf )

)
ṅmf + τ−1

g1(nmf )

(
n̈mf −

g′
1(nmf )
g1(nmf ) ṅ

2
mf

)
,

(4.21)

where the prime on each function of nmf denotes the derivative with respect to nmf . In

the limit of τ → 0, the second term on the right hand side of Eq. (4.21) goes to infinity

and hence the only way to keep the time derivative finite is to impose the condition:

n̈mf −
g′

1(nmf )
g1(nmf ) ṅ

2
mf = 0. (4.22)
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This then implies that in this limit we have:

η̇mf ≈
1

g1(nmf )

(
h(nmf )g′

1(nmf )
g1(nmf ) − h′(nmf )

)
ṅmf . (4.23)

Note that taking the limit of τ →∞ gives the same result and hence the approximation

Eq. (4.23) is valid in both the limit of small and large τ . This can be shown to be

self-consistently true; taking the time-derivative of Eq. (4.14) alongside a mean-field

approximation we get,

n̈mf =
(
h′(nmf ) + g′

1(nmf )ηmf

)
ṅmf + g1(nmf )η̇mf , (4.24)

Assuming Eqs. (4.20) and (4.23) to be true one then recovers

n̈mf −
g′

1(nmf )
g1(nmf ) ṅ

2
mf = 0, (4.25)

which means that if Eq. (4.23) holds true then so does Eq. (4.22) (and vice versa).

In Eq. (4.15) we can now substitute η from (4.19) and η̇mf for η̇ from Eq. (4.23) giving

us the UCNA for the system with colored noise on the degradation rate, which is exact

in the limits τ → 0 or τ →∞:

ṅ ≈ h(n)
C(n, τ) + 1

C(n, τ)(g1(n)θ(t) + g2(n)Γ(t)), (4.26)

where

C(n, τ) = 1 + τ

(
g′

1(n)h(n)
g1(n) − h′(n)

)
. (4.27)

Note that we have dropped off the mf subscript for clarity. Finally, in order to get a

simplified Langevin equation, we modify Eq. (4.26) such that we only have one effective

Gaussian white noise term. We begin by proposing:

g(n)Γ̃(t) = g1(n)θ(t) + g2(n)Γ(t), (4.28)

where Γ̃(t) is Gaussian white noise with mean zero and correlator ⟨Γ̃(t)Γ̃(t′)⟩ = 2δ(t−t′),
and then use relations between the correlators to find our unknown g(n). Note that

we assume zero correlation between Γ(t) and θ(t), i.e., ⟨Γ(t)θ(t′)⟩ = ⟨Γ(t′)θ(t)⟩ = 0.

Explicitly, utilising the correlators, we find:

g(n)2⟨Γ̃(t)Γ̃(t′)⟩ = g1(n)2⟨θ(t)θ(t′)⟩+ g2(n)2⟨Γ(t)Γ(t′)⟩, (4.29)
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which gives us

g(n) =
√
Dg1(n)2 + 1

2g2(n)2. (4.30)

Hence, our final reduced Langevin equation is given by:

ṅ = h(n)
C(n, τ) + g(n)

C(n, τ) Γ̃(t), (4.31)

which corresponds to the result in [190]. Note that Eqs. (4.26) and (4.31) are identical.

Here we pause to make a couple of comments on C(n, τ), which can be interpreted as

a renormalisation of the Langevin equation in Eq. (4.14) to account for the addition

of colored noise to the rate parameters. In fact, when τ = 0, Eq. (4.31) recovers the

correct Langevin equation for a process with white noise on the rate parameters. One

should also note the independence of C(n, τ) from the strength of the noise D; the

renormalisation with respect to the addition of colored noise on the degradation rate is

not specific to the size of the noise, it simply accounts for the finite correlation time.

The FPE corresponding to this SDE should be chosen in the Stratonovich form, following

from [193, 196, 197], as this is the physical implementation of an SDE with colored noise

having a non-zero correlation time τ . This FPE is:

∂P (n, t)
∂t

= − ∂

∂n

[(
h̃(n) + g̃(n)g̃′(n)

)
P (n, t)

]
+ ∂2

∂n2

[
g̃(n)2P (n, t)

]
, (4.32)

where h̃(n) = h(n)/C(n, τ) and g̃(n) = g(n)/C(n, τ). Following Eqs. (4.9)–(4.10) in

Section 4.3 and [8], the steady state solution to this equation is then given by:

P (n) = N

g̃(n)2 exp
(∫ n h̃(z) + g̃(z)g̃′(z)

g̃(z)2 dz

)
= N

g̃(n) exp
(∫ n h̃(z)

g̃(z)2dz

)
, (4.33)

where N is the normalisation constant, chosen over the domain n ∈ [0,∞).

Having made various approximations to arrive at Eq. (4.33) we now pause and summarise

the approximations made thus far, clarifying the conditions under which we expect Eq.

(4.33) to produce meaningful distributions. We started by considering Eq. (4.11) which

is the chemical Langevin equation describing protein dynamics and which was derived

from the CME describing the reaction scheme in Eq. (4.1) under the approximations

of large protein numbers and fast promoter switching. Subsequently we added colored

noise to the degradation rate in Eq. (4.11) and made a mean-field approximation (valid

for small fluctuations about the mean degradation rate) to obtain the coupled Langevin

equations Eqs. (4.12)–(4.13). These equations were then reduced to a single effective

Langevin equation Eq. (4.31) by the UCNA under the assumption that the correlation

time of colored noise is very small or very large. Finally the solution of this Langevin
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equation is given by Eq. (4.33). Hence summarizing, we expect the latter solution to be

an accurate stochastic description of the protein fluctuations in reaction scheme (4.1)

with a fluctuating degradation rate provided the protein numbers are large, promoter

switching is fast and the correlation time of fluctuations in the degradation parameter

is either very small or very large.

To test the accuracy of the distributions for colored noise provided by the UCNA in Eq.

(4.33), we compare the UCNA solution to a distribution produced from a modified SSA

that explicitly accounts for the colored noise on the degradation rate. This modification

is given in full detail in Appendix B.1. Essentially, the dilution/degradation reaction

P → ∅ is replaced by three new reactions alongside the introduction of a ghost species

Y , these being (i) ∅ −⇀↽− Y and (ii) P +Y → Y . The rates of these new reactions are then

chosen to ensure the magnitude of effective external noise on the degradation reaction,

due to fluctuations in molecule numbers of the ghost species, match the colored noise

SDE given in Eq. (4.13).
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Figure 4.3: Comparison of the UCNA (black line) from Eq. (4.33) and white extrinsic noise (UCNA
with τ = 0, dashed blue line) with stochastic simulations using the modified SSA (red points) of the
cooperative reaction scheme in Eq. (4.1), where the colored noise is added to the degradation rate.
Aside from variation in the strength of noise D (shown on each plot), the shared parameters are
ρu = 24, ρb = 464, σb = σu = 1000, d0 = 1, Ω = 200 and τ = 1. Parameters σb and σu are chosen to be
large compared to other system parameters such that the frequency of gene activation and inactivation
events is much larger than the frequency of other reaction events, i.e., the fast gene switching assumption.
Note that for this choice of rate parameters, the rate equations are bistable with equilibrium points at
n = 47.4, 360.4. The criterion

√
D/τ < 1 is required to ensure positivity of the degradation rate. As

the extrinsic noise is increased, the mass of the distribution shifts from the mode at 360.4 to the mode
at 47.4. The inset of D shows the same distribution but with the y-axis on a log scale, emphasising the
exponential tail of the distribution for large n. SSA data in each case comes from a single steady state
trajectory of 9 × 106s.



4.4. Accounting for fluctuating rates using the UCNA 77

Fig. 4.3 shows steady state probability distributions produced by the UCNA for various

values of D for a deterministically bistable set of parameters. The UCNA correctly

captures the shift of the probability mass from the equilibrium point of higher molecule

number (referred to as the upper mode) to the lower equilibrium point (referred to as

the lower mode) as D is increased. Importantly, this shows that when gene switching is

assumed to be fast, colored noise can induce bimodality—one should keep this in mind

for when we look at slow gene switching in Section 4.5. Readers should also note that

the parameter choices have been selected such that the Fokker-Planck approximation is

good, notably that the system size is large, i.e., Ω≫ 1, and the mean number of proteins

in the system is also large. In all cases
√
D/τ < 1 so that the degradation rate remains

positive. The behaviour seen as D increases in Fig. 4.3 can be explained as follows.

When D is small (Fig. 4.3A) the colored noise η in Eq. (4.15) is also small compared to

the mean number of molecules in the system, and the noise cannot force the system out

of the upper mode. As D gets larger (Figs. 4.3B and 4.3C) the fluctuations η at the

upper mode also become larger, allowing the system to explore the lower mode. When

the system is found in the lower mode the pre-factor of the coloured noise in Eq. (4.14),

g1(n) ∝ n, is lesser in magnitude, and the fluctuations in η are much smaller than when

the system inhabits the upper mode hence the increased probability mass at the lower

mode. That the system is less noisy at the lower mode means that it is much less likely

that a large fluctuation will propel the system into the upper mode. These properties of

the system as D increases can be further seen through (i) the increase in probability

mass found at the lower mode as D increases thoroughout all of Fig 4.3(A–D), and (ii)

the increased probability mass found in the tail of the distribution for large n (Fig. 4.3D);

while the tail is very slowly decaying it is still exponential and hence the distribution is

not heavy-tailed (see the inset of Fig. 4.3D). This ability to induce bimodality through

a more detailed description of the details of the degradation process is important in the

context of cellular decision-making. It is hence possible for regions of the reaction rate

parameter space previously thought unable to induce multiple phenotypic states to do

so with an increasing influence of more complex degradation mechanisms. Note that

for the majority of cases in Fig. 4.3, the UCNA provides a much better approximation

than the white noise approximation, hence one cannot simply assume that since the

correlation time τ is relatively small that it can be approximated as zero.

Fig. 4.4 shows how the UCNA responds to increasing correlation time τ while the

noise strength, D/τ , remains fixed. For all cases where τ is small, the UCNA performs

very well. As τ increases however the UCNA starts to predict ever increasing negative

probabilities for some values of n. Notably though, Fig. 4.4B shows that even where

significant negative probability is predicted at large τ , the UCNA still manages to

capture the rest of the distribution. This negativity of C(n, τ) is commented on in both

[183] and [193]. The former deals with this negativity by taking the absolute magnitude



4.4. Accounting for fluctuating rates using the UCNA 78

- 0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.4: Comparison of the UCNA (black line) against the modified SSA (colored dots) as the
correlation time τ is increased at constant noise size D/τ . Note that the y-axis shows P (n)/pmax, where
P (n) is defined in Eq. (4.33) and pmax is equal to the maximum value of P (n). (A) Shows the performance
of increasing τ for a system with parameters ρu = 20, ρb = 250, d0 = 1, σu = 3 × 102, σb = 103 and
Ω = 100. Deterministically this system is monostable with an equilibrium point at n = 194.7, however as
τ is increased a shift towards a lower mode is observed. When τ is sufficiently large, the UCNA predicts
a negative probability. (B) Shows similar to (A) but with parameters ρu = 25, ρb = 480, d0 = 1, σu =
8 × 102, σb = 103 and Ω = 200. This too is a deterministically monostable system with equilibrium
point n = 406.0. As τ increases, the breakdown of the UCNA is more apparent than for (A) with the
prediction of negative probability for small n more drastic. Both (A) and (B) show that unless τ is
large, while D/τ is small, the UCNA provides a very good approximation, even where the colored noise
induces bimodality in deterministically monomodal systems. SSA data in each case comes from a single
steady state trajectory of 9 × 105s.

of the pre-factor of the exponential in Eq. (4.33), while the latter comments that the

proof of their UCNA-like FPE is only formally valid where C(n, τ) > 0, ∀ n. Here we

choose not to take the magnitude of the pre-factor in Eq. (4.33), since although this

leads to a positive probability for all n it is nonetheless a poor approximation; but we

take careful note of the comment made by Fox in [193], as this indicates where the

UCNA will perform well. The intuition behind the argument of Fox can be stated as: if

for some n, C(n, τ) < 0 there must be a transitory value of n for which C(n, τ) = 0, at

this point the Eq. (4.31) becomes physically ill-defined and our solution is invalid.

Finally, we observe that the parameter values chosen for both plots in Fig. 4.4 correspond

to deterministically monostable systems. The bimodality that is observed in Fig. 4.4 is

hence noise induced bimodality. The mode that appears for small τ corresponds to the

deterministic equilibrium point, whereas the noise induced mode does not correspond to

an equilibrium point of the deterministic system. We notice that the ability to exhibit a

noise induced mode as τ becomes large is especially true for monostable parameter sets

which are in close proximity to bistable parameter sets in the parameter space. This

can be explained by occasional jumps between the monostable and bistable regimes

due to sufficiently large fluctuations in the degradation rate. Hence a measure of the
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distance here is the difference in the magnitude of d0 needed such that the system is

deterministically bistable divided by the noise strength, defined as ∆d0 = |d0−dc|/(D/τ),
where dc is the closest value of the mean degradation rate to d0 expressing bistability.

For example, the parameter set chosen in Fig. 4.4A, although monostable, is very

close to a parameter set that exhibits deterministic bistability (∆d0 = 2.12). On the

other hand, the parameter set of Fig. 4.4B is far from the bistable parameter regime

(∆d0 = 57.5)—and hence the bimodality shown is very limited as τ becomes large. The

reason for this noise induced bimodality then can be seen by the ability of a system,

through fluctuations in the rate parameters, to access parameter regimes which in fact

do exhibit deterministic bistability. Importantly, even when it seems bimodality is not

induced (e.g., Figs. 4.3A or 4.4B), using the extremal equation of P (n) from [190],

i.e., h̃(n) = g̃(n)g̃′(n), one can show that the UCNA still predicts the presence of two

modes. This explanation of the induced bimodality in cooperative autoregulation is

further supported by the lack of noise induced bimodality when colored noise is included

on the degradation rate of the FPE describing non-cooperative autoregulation; here

the UCNA’s extremal equation only ever predicts the existence of one mode for the

probability distribution.

4.4.2 Fluctuating effective protein production rates

We now extend the analysis from Section 4.4.1 to the effective protein production rates.

Colored noise on the effective production rates can be used to implicitly model multi-step

protein production, including multiple stages of mRNA processing before translation

(see Fig. 4.2). We add colored noise onto the effective protein production rates via,

ρu = ρ
(0)
u (1 + η1(t)) and ρb = ρ

(0)
b (1 + η2(t)), which upon substituting in the Langevin

equation describing the feedback loop Eq. (4.11) we obtain the following set of SDEs:

dn

dt
= ρ

(0)
u L+ ρ

(0)
b (n/Ω)2

L+ (n/Ω)2 − dn+ ρ
(0)
u Lη1 + ρ

(0)
b (n/Ω)2η2

L+ (n/Ω)2 (4.34)

+

√√√√ρ
(0)
u L+ ρ

(0)
b (n/Ω)2

L+ (n/Ω)2 + dn · Γ(t),

dη1
dt

= −1
τ
η1 + 1

τ
θ1(t), (4.35)

dη2
dt

= −1
τ
η2 + 1

τ
θ2(t), (4.36)

where θ1(t) and θ2(t) are Gaussian white noise terms with zero mean and correlators

⟨θ1(t)θ1(t′)⟩ = 2D1δ(t− t′) and ⟨θ2(t)θ2(t′)⟩ = 2D2δ(t− t′) respectively. Note that here

we have used a mean-field approximation for the terms under the square root, as was

done in Section 4.4.1. In a similar style to Eq. (4.28) we now propose a new noise term
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η̃(t), which couples η1(t) and η2(t), satisfying:

F (n)η̃(t) = f1(n)η1(t) + f2(n)η2(t), (4.37)

where f1(n) = ρ
(0)
u L/(L+ (n/Ω)2), f2(n) = ρ

(0)
b (n/Ω)2/(L+ (n/Ω)2) and η̃(t) is colored

noise with zero mean and correlator ⟨η̃(t)η̃(t′)⟩ = e−|t−t′|/τ/τ , satisfying the following

equation:

dη̃

dt
= −1

τ
η̃ + 1

τ
θ(t), (4.38)

where θ(t) is Gaussian white noise with correlator ⟨θ(t)θ(t′)⟩ = 2δ(t−t′). The correlators

for η1(t) and η2(t) are ⟨η1(t)η1(t′)⟩ = D1e
−|t−t′|/τ/τ and ⟨η2(t)η2(t′)⟩ = D2e

−|t−t′|/τ/τ ,

where we have assumed that the colored noise on both production rates has the same

correlation time but a differing magnitude of noise strength. Using the properties of the

correlators of η1, η2 and η̃ we then find:

F (n) =
√
f1(n)2D1 + f2(n)2D2. (4.39)

Sharing the notation adopted in Section 4.4.1, we define the following:

h(n) = ρ
(0)
u L+ ρ

(0)
b (n/Ω)2

L+ (n/Ω)2 − dn, (4.40)

g2(n) =

√√√√ρ
(0)
u L+ ρ

(0)
b (n/Ω)2

L+ (n/Ω)2 + dn. (4.41)

This gives us the following SDE which is coupled to Eq. (4.38):

dn

dt
= h(n) + F (n)η̃ + g2(n)Γ(t). (4.42)

Then, following the same UCNA procedure as in Eqs. (4.19)–(4.26), we obtain the

following approximate Langevin equation:

ṅ ≈ h(n)
C(n, τ) + 1

C(n, τ)(F (n)θ(t) + g2(n)Γ(t)), (4.43)

where

C(n, τ) = 1 + τ

(
F ′(n)h(n)
F (n) − h′(n)

)
. (4.44)
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In this case it is interesting to note that unlike the case of a fluctuating degradation

rate, here C(n, τ) does depend on both the correlation time τ and the strength of the

colored noise D1, D2 (unless D1 = D2 in which case there is only dependence on τ).

This occurs since the strengths of the noise on each production rate are independent,

and hence do not cancel out in F ′(n)/F (n). To simplify Eq. (4.43) further, we again

propose:

g(n)Γ̃(t) = F (n)θ(t) + g2(n)Γ(t), (4.45)

where Γ̃(t)Γ̃(t′) = 2δ(t−t′), and find using the correlators that g(n) =
√
F (n)2 + g2(n)2/2.

This leads to the final approximate SDE:

ṅ = h(n)
C(n, τ) + g(n)

C(n, τ) Γ̃(t), (4.46)

which is identical in notation to Eq. (4.31) but where h(n), C(n, τ) and g(n) are all

defined in this section. The equivalent FPE for this SDE is then:

∂P (n, t)
∂t

= − ∂

∂n

[(
h̃(n) + g̃(n)g̃′(n)

)
P (n, t)

]
+ ∂2

∂n2

[
g̃(n)2P (n, t)

]
. (4.47)

Again our solution for the probability distribution will then be:

P (n) = N

g̃(n) exp
(∫ n h̃(z)

g̃(z)2dz

)
, (4.48)

with h̃(n) = h(n)/C(n, τ) and g̃(n) = g(n)/C(n, τ).

Figure 4.5: This figure shows the agreement of the UCNA on the protein production rates to the modified
SSA (detailed in Section 4.4.2), also compared to the case of white extrinsic noise (τ = 0). The plots show
agreement of the UCNA over the three main qualitative regimes of cooperative autoregulation at large
molecule number, showing respectively: (i) monostable positive feedback with parameters ρ

(0)
u = 150,

ρ
(0)
b = 300, σu = σb = 103, d = 1, D1 = 0.25, D2 = 0.25, τ = 0.5, Ω = 100; (ii) bistable positive

feedback with parameters ρ
(0)
u = 24, ρ

(0)
b = 468, σu = σb = 103, d = 1, D1 = 0.75, D2 = 0.1, τ = 1,

Ω = 200; (iii) monostable negative feedback with parameters ρ
(0)
u = 470, ρ

(0)
b = 20, σu = σb = 103,

d = 1, D1 = 0.1, D2 = 0.1, τ = 1, Ω = 70. In the top right hand corner of each plot is the value of ρ
for the distribution, defined and discussed later in Section 4.4.4, here showing that for good UCNA
performance ρ should be small to satisfy condition 3. SSA data in each case comes from a single steady
state trajectory of 9 × 105s.
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We now describe the modified SSA that takes into account extrinsic noise on the effective

protein production rates. This modification replaces the protein production reaction in

each gene state, i.e., Gk → Gk + P where Gk represents either G or G∗, by three new

reactions alongside the introduction of a ghost species Yk for each gene state. These new

reactions are ∅ r1−⇀↽−
r2
Yk and Gk +Yk

r3−→ Gk +Yk +P . Utilising the LNA (assuming Yk to

be abundant), as was done for colored noise on the degradation rate in Appendix B.1,

one finds these rates to be r1 = 1/(DkΩ), r2 = 1/τ and r3 = r
(0)
k DkΩ/τ , which ensure

matching to the colored noise SDE given in Eq. (4.34), where r
(0)
k represents ρ

(0)
u or ρ

(0)
b

in G and G∗ respectively.

Figure 4.5 shows a good performance of the UCNA when compared to the modified

SSA described above. This performance is shown for each differing qualitative behaviour

expressed by cooperative bimodality, i.e., (i) monostable positive feedback, (ii) bistable

positive feedback, and (iii) monostable negative feedback. In all three plots shown the

UCNA matches the modified SSA well, and clearly performs better than if one were to

approximate the colored noise with white noise (i.e., τ = 0).

We find the same qualitative behaviour of the creation and eventual destruction of

bimodality (see Fig. 4.6A(i–iii)) as the noise strengths, D1 and D2, become large for

the colored noise on the protein production rates as was found in Fig. 4.3 for colored

noise on the degradation rate. Note that for the chosen parameter set in Fig. 4.6A that

the white noise approximation performs generally very well compared to the UCNA.

For τ ≤ 1, the white extrinsic noise approximation can typically perform quite well

compared to the modified SSA, but note that this is not always the case especially in

situations for which deterministic bistability leads to bimodality of the UCNA solution

(see Fig. 4.3).

4.4.3 Fluctuating binding/unbinding rates

Finally, we apply the UCNA to the case of colored noise added to the binding and

unbinding rates of the protein to the gene. This could be utilised to implicitly model the

effect of multiple gene states in the transition of G to G∗, as has been experimentally and

theoretically investigated [198, 170, 199], accounting for DNA looping via distal enhancers

or chromatin conformational states. For convenience we define σb = σ
(0)
b (1 + η1(t)),

σu = σ
(0)
u (1 + η2(t)) and

Lη = L0

(1 + η1(t)
1 + η2(t)

)
, with L0 = σ

(0)
u

σ
(0)
b

. (4.49)
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Substituting Eq. (4.49) in the Langevin equation describing the feedback loop Eq. (4.11)

(and making a mean-field approximation for the terms under the square root) we obtain

the following set of SDEs:

dn

dt
= Lηρu + ρb(n/Ω)2

Lη + (n/Ω)2 +
√
ρuL0 + ρb(n/Ω)2

L0 + (n/Ω)2 + dn · Γ(t), (4.50)

dη1
dt

= −1
τ
η1 + 1

τ
θ1(t), (4.51)

dη2
dt

= −1
τ
η2 + 1

τ
θ2(t), (4.52)

where θ1(t) and θ2(t) are Gaussian white noise terms with zero mean and correlators

⟨θ1(t)θ1(t′)⟩ = 2D1δ(t − t′) and ⟨θ2(t)θ2(t′)⟩ = 2D2δ(t − t′) respectively. In order to

proceed using the UCNA we must linearise the drift term in Eq. (4.50) with respect to

η1 and η2 through the small noise approximation η1,η2 ≪ 1:

dn

dt
≈ ρuL0 + ρb(n/Ω)2

L0 + (n/Ω)2 − dn+
(
L0n

2Ω2 (ρu − ρb)
(L0Ω2 + n2) 2

)
(η1 − η2) (4.53)

+
√
ρuL0 + ρb(n/Ω)2

L0 + (n/Ω)2 + dn · Γ(t).

For convenience we now define:

h(n) = ρuL0 + ρb(n/Ω)2

L0 + (n/Ω)2 − dn, (4.54)

g1(n) = L0n
2Ω2 (ρu − ρb)

(L0Ω2 + n2) 2 , (4.55)

g2(n) =
√
ρuL0 + ρb(n/Ω)2

L0 + (n/Ω)2 + dn, (4.56)

F (n) = g1(n)
√
D1 +D2, (4.57)

g(n) =
√
F (n)2 + g2(n)2/2. (4.58)

In terms of these new functions Eq. (4.53) becomes,

dn

dt
= h(n) + g1(n)(η1 − η2) + g2(n)Γ(t). (4.59)

Following Section 4.4.2 we then arrive at the UCNA for colored noise on the binding

rates where η1,η2 ≪ 1:

dn

dt
= h(n)
C(n, τ) + 1

C(n, τ) (F (n)θ(t) + g2(n)Γ(t)) . (4.60)
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Figure 4.6: Plots showing the creation and eventual destruction of bimodality in the probability
distributions for colored noise on the (A) protein production rates, (B) binding/unbinding rates (denoted
on the figure by (un)binding rates), analogously to what was observed in Fig. 4.3 for colored noise on
the degradation rate. For A it is clear that the UCNA performs well where the noise strength is both
small in A(i) and large in A(iii). For B we see that the low (B(i)) and intermediate (B(ii)) noise cases
are well predicted by the UCNA and white noise approximation, however where the noise becomes large
(B(iii)) the UCNA breaks down, whereas the white noise approximation still performs well compared to
the modified SSA prediction. Other than the noise strengths given on the figure, the parameters for both
A and B are ρ

(0)
u = 24, ρ

(0)
b = 468, σu = σb = 103, d = 1, τ = 1, Ω = 200 (i.e., the same parameters

used in Fig. 4.3 which express deterministic bistability). SSA data in each case comes from a single
steady state trajectory of 9 × 105s.
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Then, using the properties of the correlators of θ(t) and Γ(t) we arrive at:

dn

dt
= h(n)
C(n, τ) + g(n)

C(n, τ) Γ̃(t), (4.61)

where,

C(n, τ) = 1 + τ

(
g′

1(n)h(n)
g1(n) − h′(n)

)
, (4.62)

and Γ̃(t) is Gaussian white noise with mean zero and correlator ⟨Γ̃(t)Γ̃(t′)⟩ = 2δ(t− t′).
Here, as for the UCNA applied to the degradation rate, C(n, τ) is again independent

of the strengths of the colored noise terms. This UCNA, as we shall see, should be a

good approximation where both D1 and D2 are small—by ‘small’ we explicitly mean

that D1 and D2 should be smaller than noise strengths used on the UCNA for protein

production rates or the degradation rate. The solution to Eq. (4.61) is given by:

P (n) = N

g̃(n) exp
(∫ n h̃(z)

g̃(z)2dz

)
, (4.63)

with h̃(n) = h(n)/C(n, τ) and g̃(n) = g(n)/C(n, τ).

Now we evaluate the performance of the UCNA on the binding and unbinding rates, and

compare it with the modified SSA. In this case the modified SSA replaces the binding and

unbinding reactions, G+2P σb−⇀↽−
σu

G∗, by the following: ∅ r1−⇀↽−
r2
Y1, G+Y1 +2P r3−→ Y1 +G∗,

∅ r4−⇀↽−
r5

Y2, and G∗ + Y2
r6−→ G + Y2 + 2P , where Y1 and Y2 are ghost species. The

rates of these reactions are determined via the LNA (assuming the ghost species to be

numerous) and are r1 = 1/(D1Ω), r2 = 1/τ , r3 = σ
(0)
b D1Ω/τ , r4 = 1/(D2Ω), r5 = 1/τ

and r6 = σ
(0)
u D2Ω/τ .

In Fig. 4.6B we test the UCNA on the binding and unbinding rates compared to the

modified SSA described above. Clearly, the same qualitative behaviour of the creation

and destruction of bimodality, as noise strength is increased, is observed, as was also

observed for colored noise on the degradation rate (Fig. 4.3) and protein production rates

(Fig. 4.6A). The resultant expression of bimodality however, is clearly different than

for these cases. Notably, this UCNA does ascribe to an additional limitation compared

to the UCNA of degradation or production rates; a limitation due to the further small

noise approximation made in Eq. (4.53). This limitation is seen in Fig. 4.6B(iii), showing

that the UCNA applied to the binding and unbinding rates is much more sensitive to

increased noise strength than the other UCNA applications. One also observes that the

white noise approximation in Fig. 4.6B performs almost as well as the UCNA (Figs.
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4.6B(i–ii)) or in some cases better than the UCNA (Fig. 4.6B(iii)); hence, the white

noise approximation may be a safer approximation than the UCNA for colored noise

applied to the binding and unbinding rates since it approximates the SSA very well and

is less susceptible to the numerical instabilities that can result from the UCNA.

4.4.4 Breakdown conditions of the UCNA

Having now applied the UCNA to approximate distributions for colored noise on the (i)

degradation rate, (ii) protein production rates and (iii) the binding/unbinding rates,

we now assess the conditions which cause the UCNA to breakdown. The application of

the UCNA to colored noise on the protein production rates presents a somewhat more

complex problem than the application of the UCNA to colored noise on the degradation

rate or the binding/unbinding rates; hence, we more easily see that there are three

main conditions for the breakdown of the UCNA—conditions beside the large system

size or large molecule number requirement needed to approximate the discrete master

equation by a one variable FPE], or even the need for τ to be chosen small or large

enough such that Eqs. (4.22) and (4.23) are approximately satisfied. Below we detail

these three conditions, in each case explaining why the disagreement occurs. Note that

although the analysis of breakdown conditions below is done for the UCNA on the

protein production rates, the same arguments hold for the other applications of the

UCNA previously presented.

Condition 1

The first of these conditions concerns the positivity condition required on C(n, τ), that

is C(n, τ) > 0 ∀n. We refer to this as condition 1. Since we have already discussed this

condition in a previous section we will not repeat the discussion here, and refer the

reader to Section 4.4.1. In Fig. 4.7A(i) we see a disagreement between the UCNA and

the modified SSA for a parameter set that exhibits bimodality, and in Fig. 4.7A(ii) it is

verified that this is because C(n, τ) < 0 where n ≈ 100. Note however, that if C(n, τ)
becomes negative outside of the region containing most of the probability mass that the

UCNA can still provide a good approximation to the true modified SSA solution.

Condition 2

The second condition observed for the breakdown of the UCNA concerns the violation

of the characteristic ‘length’ scale (the length here being a distance measure in the

n space), which we now discuss. In Appendix B.2 we show in more detail why the

arguments we present below hold. Based on the noise intensity of the noise term arising

from the colored noise in Eq. (4.43), we can introduce the characteristic length scale L
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Figure 4.7: This figure shows the disagreement of the UCNA on the protein production rates to the
ground truth modified SSA predictions (detailed in Section 4.4.2), also compared to the case of white
extrinsic noise (τ = 0). Each disagreement corresponds to a single breakdown condition of the UCNA
being violated. The legend in A(i) applies to A(i), B(i) and C(i). Plots in A show the breakdown of the
UCNA due to condition 1. A(i) shows the prediction of negative probability due to the negativity of

C(n, τ) in A(ii) around the same value of n. Parameters for A are ρ
(0)
u = 20, ρ

(0)
b = 470, σu = σb = 103,

d = 1, D1 = 1, D2 = 0.1, τ = 10, Ω = 200. Plots in B show the breakdown of the UCNA due to
condition 2. B(ii) shows that κ(n, τ) > C(n, τ) over a large range of n, corresponding to the poor

UCNA prediction seen in B(i) over this entire region. Parameters for B are ρ
(0)
u = 50, ρ

(0)
b = 450,

σu = σb = 103, d = 1, D1 = 1, D2 = 1, τ = 1, Ω = 100. Plots in C show the breakdown of the UCNA
due to condition 3. C(ii) shows a relatively large value of γ(n) over most of the defined region D, and
also shows the the pre-factors of the total UCNA noise g̃(n) and that arising only from the colored noise
F̃ (n) = F (n)/C(n, τ). Vertical orange lines in C(i) indicate the limits of the region D. The value ρ in
the top right-hand corner of C(i) can be compared to the smaller values of ρ seen for other parameter
sets in A(i) and B(i), indicating that the breakdown observed is truly associated to condition 3. The

parameters for C are ρ
(0)
u = 2300, ρ

(0)
b = 120, σu = σb = 104, d = 1, D1 = 0.002, D2 = 0.04, τ = 2,

Ω = 230. SSA data in each case comes from a single steady state trajectory of 9 × 105s.

over which fluctuations in the colored noise term are damped:

L(n, τ) = F (n)
C(n, τ) , (4.64)

noting that the requirement of condition 1 means that this length is always positive.

Our approximate one variable FPE in Eq. (4.47) will then be valid under the condition

that the drift term varies slowly with respect to L (following Appendix B.2), meaning

that one needs to satisfy

L
∣∣∣∂n

(
h̃(n) + g̃(n)g̃′(n)

)∣∣∣≪ ∣∣∣h̃(n) + g̃(n)g̃′(n)
∣∣∣ (4.65)

in order for the UCNA to hold. More succinctly, this condition is:

C(n, τ)≫ κ(n, τ), (4.66)
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where we henceforth define the function

κ(n, τ) = F (n)

∣∣∣∣∣∣
∂n

(
h̃(n) + g̃(n)g̃′(n)

)
h̃(n) + g̃(n)g̃′(n)

∣∣∣∣∣∣ . (4.67)

We refer to Eq. (4.66) as condition 2. In Fig. 4.7B we explore this breakdown for

a parameter set that breaks condition 2 over a large region of the parameter space,

between 0 < n < 650. Clearly the UCNA provides a poor approximation in this regime;

note however that, similar to condition 1, if condition 2 is violated (i) outside of the

domain where most of the probability mass is contained, or (ii) over a small region of

the domain containing most of the probability mass, then the UCNA can still provide a

good approximation.

Condition 3

The final condition resulting in the breakdown of the UCNA concerns the underestimation

of noise. We refer to this as unaccounted peak noise, and this forms our final breakdown

condition, condition 3. The explanation behind condition 3 is that the UCNA in general

will always underestimate the Poisson noise for a particular value of n, arising from

the necessary neglection of Poisson noise terms in the derivation of the UCNA: (i)

neglection of the noise terms under the square root of the Poisson noise pre-factor in

Eqs. (4.34) (a form of mean-field approximation), and (ii) neglection of Poisson noise

term g2(n)Γ(t) and its time derivative from the η̇ term in Eqs. (4.19–4.21) via the

use of another mean-field approximation. However, the error on the UCNA caused by

condition 3 will be small when colored noise dominates the Poisson noise. To investigate

the degree to which colored noise is dominant, identifying F (n)/C(n, τ) from Eq. (4.42)

and g(n)/C|(n, τ) from Eq. (4.46), we define

γ(n) =
∣∣∣∣g(n)/C(n, τ)− F (n)/C(n, τ)

g(n)/C(n, τ)

∣∣∣∣ =
∣∣∣∣g(n)− F (n)

g(n)

∣∣∣∣ (4.68)

where, for some n, if γ(n) ≈ 1 then Poisson noise dominates, else if γ(n) ≈ 0 then colored

noise dominates. Intermediate values of γ(n) mean that both Poisson and colored noise

is apparent in the system. To investigate whether noise is underestimated generally over

the region containing most of the probability, defined as D = [nmin, nmax], we further

define

ρ = 1
|D|

∫ nmax

nmin

γ(n)dn. (4.69)
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Here, if ρ ≈ 1 then Poisson noise dominates over the entire region D, else if ρ ≈ 0 then

colored noise dominates over the entire region D. Fig. 4.7C explores this disagreement,

where Fig. 4.7C(i) shows the clear underestimation of noise in the UCNA distribution

when compared to the modified SSA distribution. Sample values of nmin and nmax are

also shown on Fig. 4.7C(i). Fig. 4.7C(ii) shows how the total UCNA noise g̃(n) varies

with respect to the contribution of colored noise F̃ (n) = F (n)/C(n, τ). Also shown

on Fig. 4.7C(ii) is the variation of γ(n). Values of ρ are shown in the top right-hand

corner for all probability distributions in Fig. 4.5; unlike the other distributions shown

in Figs. 4.5 and 4.7, in Fig. 4.7C(i) ρ ̸≈ 0 does not hold, clarifying that the reason for

the UCNA’s disagreement for this parameter set is due to condition 3.

Large τ UCNA distributions

Having successfully identified the three main conditions causing the breakdown of the

UCNA, we are now able to determine where the UCNA will perform well, even in the

large τ limit. In Figure 4.8 we explore an example of the UCNA performing exceptionally

well for τ = 102 (see Fig. 4.8(i)). Clearly the UCNA does not violate any of the three

conditions here: (1) C(n, τ) is not negative in D (see Fig. 4.8(ii)); (2) C(n, τ)≫ κ(n, τ)
in D (again, see Fig. 4.8(ii)); (3) γ(n) is small for all n in D (see Fig. 4.8(iii)) as evidenced

by the small value of ρ = 0.001. As expected, the prediction of white noise on the protein

production rates is very poor in the regime where τ ≫ 1.

Figure 4.8: Plots showing a good performance of the UCNA for τ = 100. (i) Shows the probability
distributions from the modified SSA, UCNA and white noise approximation. Ther vertical orange lines
show the limits of the region D in this case. (ii) Shows that in the region D that condition 1 is satisfied
since C(n ∈ D) > 1, and condition 2 is satisfied since C(n ∈ D, τ) ≫ κ(n ∈ D, τ). (iii) Shows that
condition 3 is satisifed in D, i.e., γ(n) ≈ 0, since g̃(n) ≈ F̃ (n), which is corroborated by the small value

of ρ shown in (i). Other parameters here are ρ
(0)
u = 10, ρ

(0)
b = 400, σu = σb = 103, d = 1, D1 = 0.5,

D2 = 1, Ω = 70. SSA data in each case comes from a single steady state trajectory of 9 × 105s.
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4.5 Slow gene switching: the conditional UCNA

In the previous sections we have focused on fast gene switching, whereby a Hill function

can then be used to approximate the production of proteins from two different gene

states, shown in the reaction scheme of Eq. (4.1). We now consider the case where

the switching rates σu and σb are very small; small enough that the system has two

dominant modes of behaviour, one pertaining to each gene state. The approach followed

here is very similar to the conditional linear noise approximation (cLNA) studied in

[161], but instead of approximating the distribution conditional on each gene state as a

Gaussian we instead utilise the UCNA in each gene state. We shall refer to this method

as the conditional UCNA (cUCNA). We begin by stating the law of total probabiity for

the marginal distribution of proteins that we are interested in approximating:

P (n, t) =
∑
G

P (Gi, t)P (n|Gi, t). (4.70)

Here G is the set of possible gene state (in our case G = {G,G∗}), P (Gi, t) is the

marginal distribution of being in gene state Gi at a time t and P (n|Gi, t) is the

conditional probability of having n proteins at a time t given that the system is in

state Gi. Our task now is to find suitable approximations for P (Gi, t) and P (n|Gi, t)
that allow us then to construct an approximation of the full steady state distribution

in Eq. (4.70). In our case we have two different gene states, G and G∗, and hence

we can construct the reaction schemes conditional on each gene state. The reaction

scheme conditional on gene state G is (i) G
ρu−→ G+P, P

d−→ ∅, and the reaction scheme

conditional on gene state G∗ is (ii) G∗ ρb−→ G∗ + P, P
d−→ ∅. This then allows us to

approximately find the steady state mean number of proteins conditional on each gene

state when σu and σb are very small (where the subscript a denotes approximate):

⟨n|G⟩a = ρu/d and ⟨n|G∗⟩a = ρb/d. We can use these conditional means to find the

marginal probabilities of being in a specific gene state at steady state. Note that in this

calculation we will ignore the influence of noise on the rate parameters; the inherent

assumption is that extrinsic noise does not much influence the probability of being

in each gene state. First we write an approximate master equation for the transitions

between differing gene states:

d

dt
P (G, t) ≈ σuP (G∗, t)− σb⟨n|G⟩2a

Ω2 P (G, t). (4.71)
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We can then solve the above equation at steady state (denoted by the subscript s) by

utilising conservation of probability, Ps(G) = 1− Ps(G∗), giving:

Ps(G∗) =
(

1 + σu

σb

(
d · Ω
ρu

)2)−1

, (4.72)

Ps(G) =
(

1 + σb

σu

(
ρu

d · Ω

)2
)−1

. (4.73)

Since now we have the Ps(Gi) needed for Eq. (4.70) we need to find the Ps(n|Gi) terms.

Here we show how to calculate these terms for noise on the degradation rate, although

this can be easily extended to the case where we have noise on the protein production

rates. In each gene state, the system we are concerned to study is Gi
ri−→ Gi +P, P

di−→ ∅,

where Gi, di and ri represent either gene state G or G∗, the corresponding gene state

dependent decay rate, and production rate ρu or ρb respectively. Adding colored noise

to the degradation rate di = d0(1 + ηi), where di is the degradation rate in gene state

Gi given colored noise ηi, we then have the following set of SDEs in each gene state

(here we have applied the mean-field approximation to the terms in the square root):

dn

dt
= ri − d0 n− (d0 n)ηi +

√
ri + d0n · Γ(t), (4.74)

dηi

dt
= − 1

τi
ηi + 1

τi
θi(t), (4.75)

where Γ(t) and θi(t) are Gaussian white noise terms, each with zero mean and correlators

⟨Γ(t)Γ(t′)⟩ = δ(t− t′) and ⟨θi(t)θi(t′)⟩ = 2Diδ(t− t′) respectively. Processing the usual

steps of the UCNA method, detailed explicitly in Section 4.4, we find the approximate

steady state probability for each gene state:

Ps(n|Gi) ≈ N exp (u(n, ri))n2riτi−1(ri + d0 n(2d0Din+ 1))− 1
2 − 1

2d0Di
−riτi(n+ riτi),

(4.76)

where N is a normalisation constant and we have defined,

u(n, ri) =
(Di (4− 6d0τi) ri + 1) tan−1

(
4d0Din+1√

8Diri−1

)
d0Di

√
8Diri − 1

. (4.77)

Hence, using Eqs. (4.72)–(4.73) and (4.76) we can now approximate Eq. (4.70) as:

P (n) ≈ Ps(G)Ps(n|G) + Ps(G∗)Ps(n|G∗). (4.78)
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Figure 4.9: Comparison of the cUCNA with the modified SSA for increasing values of the colored noise
strength for both gene states, D. It is seen that the cUCNA (solid lines) is a good approximation to
the true distribution (dots, simulated using the modified SSA described in Appendix B.1), especially
for small values of D. The noise strengths for each plot are (i) D = 0.1, (ii) D = 0.2, (iii) D = 0.3, (iv)
D = 0.4, (v) D = 0.5, and the shared parameters are ρu = 30, ρb = 75, σb = 0.01, σu = 0.001, d0 = 0.5
and τ = 1. Clearly as D gets larger the bimodality exhibited by the slow switching between the gene
states is destroyed by the extrinsic noise added to the degradation rate.

Figure 4.9 compares the cUCNA with the modified SSA—which is the same as the

modified SSA found in Section 4.4.1. Fig. 4.9(i) shows that for small switching rates, the

cUCNA can correctly capture the bimodality exhibited where the colored noise on the

degradation rate is small. As the noise on the degradation rate gets larger the cUCNA

still provides a decent approximation to the true distributions; it is also clear that the

bimodality of the protein distribution is destroyed as the size of this noise increases. One

can contrast this to the cases observed in Figs. 4.3 and 4.6 which showed that where

the gene switching rates are fast, increased colored noise strength can in fact induce

bimodality. In summary, we find that extrinsic noise on the degradation rate of a slow

switching auto-regulatory system generally destroys bimodality, but for fast switching it

is common to observe the opposite phenomenon.
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4.6 Applications

In this section we explicitly show, by means of two examples, how one can use the colored

noise formulation that was introduced earlier to describe intricate molecular details

of cooperative autoregulation. We first show this for multi-stage protein production

with fast gene switching, and then for multi-stage protein degradation with slow gene

switching.

4.6.1 Multi-stage protein production

The first example of using colored noise as a form of model reduction is that of mapping

multistage protein production onto a simpler system, where colored noise accounts for

processes not explicitly considered in the simpler model. Consider multi-stage protein

production on the cooperative auto-regulatory feedback loop:

G
ρu−→ G+M1, G

∗ ρb−→ G∗ +M1, (4.79)

Mi
Λi−→Mi+1, i ∈ [1, N − 1], MN

ΛN−−→ ∅, MN
r1−→MN + P,

G+ 2P σb−⇀↽−
σu

G∗, P
d−→ ∅,

where it is assumed the system contains only one gene copy, either in state G or in

state G∗. The simpler model that we will then map this system onto the cooperative

auto-regulatory feedback loop:

G
ρu−→ G+ P, G∗ ρb−→ G∗ + P, (4.80)

G+ 2P σb−⇀↽−
σu

G∗, P
d−→ ∅,

where ρu = ρ
(0)
u (1+η1(t)) and ρb = ρ

(0)
b (1+η2(t)), and assigning the properties of colored

noises η1(t) and η2(t) such that Eq. (4.79) can be mapped onto Eq. (4.80) is the task

we have assigned ourselves. One can think of the different Mi for i < N as the various

stages of nascent mRNA, before it is eventually fully transcribed in stage MN (mature

mRNA) where it can then begin translation [200, 201, 202]. Utilising the slow scale linear

noise approximation [84] one can show that if Λi ≫ max{ΛN , ρu, ρb} for i ∈ [1, N − 1]
then the nascent mRNA M1, ...,MN−1 are fast species, and the reaction system in Eq.

(4.79) is consistent with the following reaction scheme describing fluctuations in the

slow species G, G∗, MN and P :

G
ρu−→ G+MN , G

∗ ρb−→ G∗ +MN , (4.81)

MN
ΛN−−→ ∅, MN

r1−→MN + P,

G+ 2P σb−⇀↽−
σu

G∗, P
d−→ ∅.
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We now apply the van Kampen ansatz to the number of mature mRNA, MN . In

gene state G this gives us n1(t) = Ωϕ1 + Ω1/2ϵ1(t), and in gene state G∗ this gives us

n2(t) = Ωϕ2 + Ω1/2ϵ2(t), where ϕ1 = ρu/(ΛN Ω) and ϕ2 = ρb/(ΛN Ω) are the steady

state solutions to the rate equation describing the mature mRNA in the gene states G

and G∗ respectively, and ϵ1(t) and ϵ2(t) describe small fluctuations about these means.

Note the occurrence of 1/Ω in ϕ1 and ϕ2 follows since the concentration of a single gene

in a volume Ω is 1/Ω. Using these ansatzes allows us to construct the effective protein

production rates in gene states G and G∗ respectively:

ρu = r1n1(t) = r1ρu

ΛN

(
1 + Ω1/2 ΛN

ρu
ϵ1(t)

)
, (4.82)

ρb = r1n2(t) = r1ρb

ΛN

(
1 + Ω1/2 ΛN

ρb
ϵ2(t)

)
. (4.83)

One can then see that ρ
(0)
u = r1ρu/ΛN , ρ

(0)
b = r1ρb/ΛN and that the noise terms have

the form:

η1(t) = Ω1/2 ΛN

ρu
ϵ1(t), (4.84)

η2(t) = Ω1/2 ΛN

ρb
ϵ2(t). (4.85)

In order to fully specify η1(t) and η2(t) we need to find the correlators ⟨η1(t)η1(t′)⟩ and

⟨η2(t)η2(t′)⟩, which can be done by application of the linear noise approximation (LNA)

[8]. Note that since we are already restricted to the large system size, large molecule

number regime following the FPE approximation to the CME (discussed in Section

4.4.1), we can apply the LNA without further restricting the validity of the final solution.

The same can also be said for the use of the LNA in Section 4.6.2. Applying the LNA to

n1(t) and n2(t), whose fluctuations are fully specified by the reactions G
ρu−→ G+MN ,

G∗ ρb−→ G∗ +MN and MN
ΛN−−→ ∅, gives us the two following one variable FPEs:

∂Π(ϵ1, t)
∂t

= ΛN
∂

∂ϵ1
(ϵ1Π(ϵ1, t)) + 1

2

(2ρu

Ω

)
∂2Π(ϵ1, t)

∂ϵ21
, (4.86)

∂Π(ϵ2, t)
∂t

= ΛN
∂

∂ϵ2
(ϵ2Π(ϵ2, t)) + 1

2

(2ρb

Ω

)
∂2Π(ϵ2, t)

∂ϵ22
, (4.87)
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where Π(ϵi, t) is the probability of having a fluctuation of size ϵi at a time t. These

FPEs, combined with Eq. (4.84) and (4.85), admit equivalent Langevin equations for

η1(t) and η2(t), given by:

dη1(t)
dt

= ΛN

(
−η1(t) +

√
2
ρu
β1(t)

)
, (4.88)

dη2(t)
dt

= ΛN

(
−η2(t) +

√
2
ρb
β2(t)

)
, (4.89)

where β1(t) and β2(t) are independent Gaussian white noises with zero mean and

correlator ⟨β1(t)β1(t′)⟩ = ⟨β2(t)β2(t′)⟩ = δ(t− t′). From here one can find the correlators

of η1(t) and η2(t):

⟨η1(t)η1(t′)⟩ = ΛN

ρu
exp

(
−ΛN |t− t′|

)
, (4.90)

⟨η2(t)η2(t′)⟩ = ΛN

ρb
exp

(
−ΛN |t− t′|

)
. (4.91)

Comparing to the results of Section 4.4.2 it is clear that η1(t) and η2(t) satisfy the

definition of colored noise, with noise strengths D1 = 1/ρu, D2 = 1/ρb and shared

correlation time τ = 1/ΛN . This completes the mapping between the full complex system

in Eq. (4.79) and our reduced process in Eq. (4.80). We can hence utilise our solution

for the probability distribution with colored noise on the effective protein production

rates in Eq. (4.48). Note that the colored noise in this case can model transcriptional

bursting, namely the production of proteins in bursts due to rapid translation from short

lived mRNA [203, 45]; bursty expression has been previously modelled in the literature

by an effective first-order reaction with constant rate parameter but with the special

property that when the reaction fires, the number of proteins produced is sampled from

a geometric distribution [204, 1].

In Fig. 4.10A we show how effective the UCNA can be in approximating the protein

distribution from the full system described in Eq. (4.79), where we have for simplicity

assumed that there are three mRNA states: M1, M2 and M3 (i.e., N = 3). Fig. 4.10A(i)

shows the approximation for a parameter set exhibiting bimodality: the red points

represent the standard SSA of the full system in Eq. (4.79); the black line represents the

distribution predicted from the UCNA (i.e., using Eq. (4.48) with D1 = 1/ρu, D2 = 1/ρb

and τ = 1/ΛN ); the blue dotted line represents the distribution if one put white noise

of the same magnitude on the protein production rates (i.e., the UCNA at τ = 0); and

the orange line with circles shows the distribution if one was to neglect noise on the

reaction rates entirely (i.e., ρu = ρ
(0)
u and ρb = ρ

(0)
b ). Clearly, in Fig. 4.10A(i) the UCNA

is the only distribution that fits the SSA prediction, showing both the effectiveness of

our model reduction as well as the need to properly account for the correlation time of
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colored noise in model reduction. This makes sense, since one would expect processes

occurring in the full system to be correlated over short times, i.e., that noise events in

close temporal proximity are not independent, and one cannot simply neglect these effects.

Fig. 4.10A(ii) instead shows the various approximations for a monomodal parameter set.

In this case, white noise is a poor approximation, and it is clear that one cannot neglect

the finite correlation time. However, it is interesting to note that properly accounting

for the correlation time using the UCNA returns the same distribution as if one had not

added noise to the production rates at all—this is due to the small magnitudes of D1/τ

and D2/τ respectively. These two examples shows that where correlation time is finite,

it is imperative that one models it correctly.
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Figure 4.10: (A) Shows distributions of the standard SSA of the reaction scheme in Eq. (4.79) for
multistage protein production in three intermediate species M1, M2 and M3, against (1) the UCNA,
(2) white noise (i.e., τ = 0) and (3) no extrinsic colored noise (i.e., the solution given by Eq. (4.10)).
Each plot shows the colored noise parameters used for the UCNA solution from Eq. (4.48), which
are determined from the full multi-stage protein production process in Eq. (4.79). Note the legend
in A(ii) applies only to distributions in A(i–ii). Parameter values for the standard SSA in A(i) are
ρu = 2, ρb = 50, Λ1 = 1000, Λ2 = 1000, Λ3 = 0.1, r1 = 1, σu = σb = 1000, d = 1 and Ω = 230.
Parameter values for the SSA in A(ii) are ρu = 20, ρb = 80, Λ1 = 1000, Λ2 = 1000, Λ3 = 0.2, r1 = 1,
σu = σb = 1000, d = 1 and Ω = 100. (B) Shows distributions of the standard SSA, with protein decay
following the multi-step process of Eq. (4.92), against the cUCNA. The colored noise parameters used
for the cUCNA solution of Eq. (4.118) are shown on each plot, with these values being determined from
the full model using Eqs. (4.99,4.116,4.117). The insets show a comparison of the approximate correlator
(see Eq. (4.115)) and the full double exponential correlator (see Eq. (4.114)) for gene state G∗. Note
the legend in B(ii) applies only to distributions in B(i–ii), and the legend on the inset of B(ii) applies
also to the inset in B(i). Parameter values for the SSA in B(i) are ρu = 50, ρb = 250, σb = 2.5 × 10−3,
σu = 10−3, Ω = 200, d1 = 1, k = 1 and d2 = 0.1. Parameter values for the SSA in B(ii) are ρu = 100,
ρb = 400, σb = 10−3, σu = 10−4, Ω = 200, d1 = 1, k = 1 and d2 = 5. SSA data for A(i) and A(ii) come
from a single steady state trajectories of length 108s and 9 × 105s respectively. Note that A(i) presents
a very long relaxation to the steady state due to the systems inertia in staying in one of the two modes
of the distribution. SSA data for B(i) and B(ii) come from a single steady state trajectory of 9 × 106s.
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4.6.2 Multi-stage protein degradation

Proteins in cells are often degraded via multi-step processes. For example, a major

degradation pathway in eukaryotic cells is the ubiquitin-proteasome degradation pathway

[205], and more recent experiments have shown that a subset of proteins in the

mammalian proteome have age-dependent degradation rates [206, 207]. From Fig. 2 in

[206] we consider a system with two different stages of protein with differing degradation

rates combined with the cooperative auto-regulatory feedback loop:

G
ρu−→ G+ P1, G

∗
1,2

ρb−→ G∗
1,2 + P1, (4.92)

P1
κ−→ P2, P1

d1−→ ∅, P2
d2−→ ∅,

G+ 2P1
σb−⇀↽−
σu

G∗
1, G+ 2P2

σb−⇀↽−
σu

G∗
2,

where G∗
1,2 indicates either the state G∗

1 or G∗
2. This reaction system models age

dependent protein states, since the protein P1 is always produced from the gene, and

eventually undergoes a transition to protein state P2, where P1 and P2 have differing

degradation rates. We will show how to map this system to the reduced system:

G+ 2P σb−⇀↽−
σu

G∗, G
ρu−→ G+ P, G∗ ρu−→ G∗ + P, P

d−→ ∅, (4.93)

where the total number of P is given as the sum of the number of P1 and P2, i.e.,

n = n1 + n2, G∗ is simply the sum of G∗
1 and G∗

2, and d = d0(1 + η(t)), where η(t) is

colored noise. Our task is to find the properties of the noise η(t) such that one can map

the full system in Eq. (4.92) onto the reduced system in Eq. (4.93). Note that although

we here look at two different stages of protein, the analysis presented below can be

easily extended for several different stages of protein degradation.

One finds that the effective degradation rate of the sum of protein number P1 and P2 is:

d = n1d1 + n2d2
n1 + n2

. (4.94)

In the following analysis we consider gene switching to be slow, which allows us to apply

the cUCNA from Section 4.5. We first consider the probability of being in each gene

state at steady state Ps(Gk), where Gk represents either gene state G or G∗. Note that

we assume both protein stages P1 and P2 can bind and unbind to the gene at the same

respective rates, and note that ⟨n|G⟩ = ⟨n1|G⟩+ ⟨n2|G⟩. Following the analysis from
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Section 4.5 in Eqs. (4.72–4.73) we find:

Ps(G∗) =
(

1 + σuΩ2

σb

(
d2(κ+ d1)
ρu(κ+ d2)

)2)−1

, (4.95)

Ps(G) =
(

1 + σb

σuΩ2

(
ρu(κ+ d2)
d2(κ+ d1)

)2)−1

. (4.96)

We can now proceed to find the probability distribution conditional on each gene state

Ps(n1, n2). In gene state Gk the conditional reaction system is:

Gk
rk−→ Gk + P1, P1

d1−→ ∅, P1
κ−→ P2, P2

d2−→ ∅, (4.97)

where the protein is always produced in stage P1, and rk ≡ ρu in gene state G, and

rk ≡ ρb in gene state G∗. Now we employ the van Kampen ansatz [8] on n1 and n2

in gene state Gk, i.e., n
(k)
1 (t) = Ωϕ∗(k)

1 + Ω1/2ϵ
(k)
1 (t) and n

(k)
2 (t) = Ωϕ∗(k)

2 + Ω1/2ϵ
(k)
2 (t),

where ϕ
∗(k)
1 and ϕ

∗(k)
2 are the deterministic steady state mean concentrations of P1 and

P2 in gene state Gk respectively, and ϵ
(k)
1 (t) and ϵ

(k)
2 (t) are fluctuations about these

mean values. In the following we drop the superscript (k) notation for aesthetic reasons,

although one should keep in mind that the process below must be individually conducted

on each gene state. The purpose of using the van Kampen ansatz can be seen upon its

substitution into Eq. (4.94) which for a large system size, Ω, gives:

d = d1ϕ
∗
1 + d2ϕ

∗
2

ϕ∗
1 + ϕ∗

2

(
1 + Ω−1/2

(
ϵ1(t)

( d1
d1ϕ∗

1 + d2ϕ∗
2
− 1
ϕ∗

1 + ϕ∗
2

)
(4.98)

+ϵ2(t)
( d2
d1ϕ∗

1 + d2ϕ∗
2
− 1
ϕ∗

1 + ϕ∗
2

)))
+O(Ω−1).

By comparing to the effective degradation from the reduced model in gene state Gk,

d = d0(1 + ηk(t)), one can see that to match the two models we must have

d0 = (d1ϕ
∗
1 + d2ϕ

∗
2)/(ϕ∗

1 + ϕ∗
2), (4.99)

and

ηk(t) = Ω−1/2 (ϵ1(t)y1(d1, d2, ϕ
∗
1, ϕ

∗
2) + ϵ2(t)y2(d1, d2, ϕ

∗
1, ϕ

∗
2)) , (4.100)

where we have defined the functions,

y1(d1, d2, ϕ
∗
1, ϕ

∗
2) = d1

d1ϕ∗
1 + d2ϕ∗

2
− 1
ϕ∗

1 + ϕ∗
2
, (4.101)

y2(d1, d2, ϕ
∗
1, ϕ

∗
2) = d2

d1ϕ∗
1 + d2ϕ∗

2
− 1
ϕ∗

1 + ϕ∗
2
. (4.102)
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If the correlators ⟨ϵ1(0)ϵ1(t)⟩, ⟨ϵ2(0)ϵ2(t)⟩, ⟨ϵ1(0)ϵ2(t)⟩ and ⟨ϵ2(0)ϵ1(t)⟩ are known, then

one can also find the correlator of ηk(t), i.e., ⟨ηk(0)ηk(t)⟩, given by:

⟨ηk(0)ηk(t)⟩ = 1
Ω
(
y2

1⟨ϵ1(0)ϵ1(t)⟩+ y2
2⟨ϵ2(0)ϵ2(t)⟩+ y1y2(⟨ϵ1(0)ϵ2(t)⟩+ ⟨ϵ2(0)ϵ1(t)⟩)

)
.

(4.103)

Note in Eq. (4.100) that if d1 = d2 = d, then the magnitude of ηk(t) is zero for all t

since the system P1
κ−→ P2, P1

d−→ ∅, P2
d−→ ∅ is equivalent to P

d−→ ∅ where one is only

interested in the total number of proteins.

To proceed in finding ηk(t) in Eq. (4.100), we first need to find the steady state

concentrations ϕ∗
1 and ϕ∗

2 from the deterministic rate equations. These are,

dϕ1
dt

= rk

Ω − (κ+ d1)ϕ1, (4.104)

dϕ2
dt

= κϕ1 − d2ϕ2, (4.105)

where again the 1/Ω in Eq. (4.104) follows since the concentration of a single gene in a

volume Ω is 1/Ω. Enforcing the steady state condition allows us to find ϕ∗
1 and ϕ∗

2,

ϕ∗
1 = rk

Ω(κ+ d1) , ϕ
∗
2 = κrk

d2(κ+ d1) .

Note that the linear dependence of ϕ∗
1 and ϕ∗

2 on rk means that the effective degradation

rate d0 from Eq. (4.99) is independent of the gene state. Assuming that both P1 and P2

are numerous, we now proceed to the LNA [8, 87] of the system in Eq. (4.97), which will

allow us to find the correlators ⟨ϵ1(0)ϵ1(t)⟩, ⟨ϵ2(0)ϵ2(t)⟩, ⟨ϵ1(0)ϵ2(t)⟩ and ⟨ϵ2(0)ϵ1(t)⟩.
Where S is the stoichiometric matrix, ϕ = (ϕ1, ϕ2) and f(ϕ) is the macroscopic rate

vector one can computationally find the required matrices needed to perform the LNA:

(i) the steady state Jacobian matrix Aij = d(S · f(ϕ))j/dϕi|ϕ=ϕ∗ , and (ii) the steady

state diffusion matrix (B · BT )ij = S ·Diag(f(ϕ)) · ST |ϕ=ϕ∗ . The Jacobian matrix then

allows us to find the time evolution of both ⟨ϵ1(t)⟩ and ⟨ϵ2(t)⟩ since ∂t⟨ϵ⟩ = A · ⟨ϵ⟩,
where ⟨ϵ⟩ = (⟨ϵ1(t)⟩, ⟨ϵ2(t))⟩. Solving these coupled first order ODEs gives us:

⟨ϵ1(t)⟩ = ⟨ϵ1(0)⟩e−(d1+κ)t, (4.106)

⟨ϵ2(t)⟩ = −κ⟨ϵ1(0)⟩e−(d1+κ)t + (κ⟨ϵ1(0)⟩+ (d1 − d2 + κ)⟨ϵ2(0)⟩)e−d2t

d1 − d2 + κ
, (4.107)

where −d2 and −(d1+κ) are eigenvalues of A. Clearly, in the limit t→∞ the fluctuations

about the steady state concentrations ϕ∗
1 and ϕ∗

2, ⟨ϵ1(t)⟩ and ⟨ϵ2(t)⟩, tend to zero as

required. The final step of the LNA then requires us to find the covariance matrix C at

steady state, which has the steady state variances ⟨ϵ21⟩ and ⟨ϵ22⟩ as diagonal components

and covariance ⟨ϵ1ϵ2⟩ = ⟨ϵ2ϵ1⟩ in the off-diagonal components. C is then given by the
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Lyapunov equation [87]:

A · C + C ·AT + B · BT = 0, (4.108)

whose solution is given by:

C =

 rk
(d1+κ)Ω 0

0 κrk
d2(d1+κ)Ω

 . (4.109)

From van Kampen [8] p. 259 we assert that for some fluctuation ϵi, ⟨ϵi(0)ϵj(t)⟩ =
⟨ϵi(0)⟨ϵj(t)⟩⟩, and that at t = 0 we have ϕ = ϕ∗ so that ⟨ϵi(0)ϵj(0)⟩ = ⟨ϵiϵj⟩. For

example, for ⟨ϵ1(0)ϵ1(t)⟩ we have, using ⟨ϵ1(t)⟩ from Eq. (4.106) and ⟨ϵ21⟩ from Eq.

(4.109), ⟨ϵ1(0)ϵ1(t)⟩ = ⟨ϵ1(0)⟨ϵ1(t)⟩⟩ = ⟨ϵ21⟩e−(d1+κ)t. Explicitly, one can then calculate

all the correlators, which are given by:

⟨ϵ1(0)ϵ1(t)⟩ = rk

(d1 + κ)Ωe
−(d1+κ)t, (4.110)

⟨ϵ2(0)ϵ2(t)⟩ = κrk

d2(d1 + κ)Ωe
−d2t, (4.111)

⟨ϵ2(0)ϵ1(t)⟩ = 0, (4.112)

⟨ϵ1(0)ϵ2(t)⟩ = κrk(e−d2t − e−(d1+κ)t)
(d1 + κ)(d1 − d2 + κ)Ω . (4.113)

Now that these correlators have been determined, we can substitute them into Eq.

(4.103) giving us the following for the correlator of ηk(t):

⟨ηk(0)ηk(t)⟩ =
(d1 − d2) 2κ

(
κ (d1 + κ) e−(d1+κ)t + (d1 − d2) d2e

−d2t
)

(d1 + κ) (d1 − d2 + κ) (d2 + κ) 2rk
, (4.114)

noting the only dependence on the gene state Gk comes from the pre-factor 1/rk.

Comparing this equation to the colored noise seen in Eq. (4.12) in Section 4.4.1 we see

however that we have two exponentials in the correlator. This sum of exponentials in

Eq. (4.114) can be approximated by a single exponential through a small t expansion.

This gives us:

⟨ηk(0)ηk(t)⟩ ≈ ⟨ηk(0)ηk(t)⟩a = D
(k)
a

τa
e−t/τa , (4.115)
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where D
(k)
a and τa are the approximate noise strength and correlation time given by:

D(k)
a = (d1 − d2) 2κ

(d1 + κ) (d1κ+ d2 (d2 + κ) + κ2) rk
, (4.116)

τa = d2 + κ

d1κ+ d2 (d2 + κ) + κ2 . (4.117)

Clearly, the small t expansion allows us to roughly interpret the noise ηk(t), present in

gene state Gk, as colored noise with strength Da/τa and correlation time τa. Note that

even when both exponentials equally contribute to the correlator in Eq. (4.114), this

is generally a very good approximation for few protein stages so long as Eq. (4.115) is

also a good approximation. Knowing D
(k)
a and τa for ηk(t) we can now substitute them

into Eqs. (4.76–4.77) in Section 4.5, then using Eqs. (4.95–4.96) we find

P (n) ≈ Ps(G)Ps(n|G) + Ps(G∗)Ps(n|G∗). (4.118)

Fig. 4.10B shows two different cases of the cUCNA predicting distributions for multi-

stage degradation and slow gene switching: in B(i) for the case of d1 > d2 (true for

around 80% of proteins in [206]); in B(ii) for the case of d2 > d1 (true for around 20%

of proteins in [206]). On the main plots red dots show the standard SSA prediction of

the full reaction scheme in Eq. (4.92), and the black lines show the cUCNA from Eq.

(4.118), which in both cases is almost indistinguishable from the white noise (cUCNA

with τ = 0) and no external colored noise predictions (discussed further in the following

paragraph). The insets show the correlators in gene state G∗, where the red dashed

line represents ⟨ηG∗(0)ηG∗(t)⟩a and the black line shows ⟨ηG∗(0)ηG∗(t)⟩. Note that the

correlators for gene state G are not shown because they show very similar to what is

seen for state G∗. Even given the complex model reduction from two protein species to

one effective protein species the cUCNA performs very well in predicting distributions

from the standard SSA of the full system in Eq. (4.92). Note that as one considers

more protein stages with differing degradation rates it becomes more different to fit the

correlator to a single exponential, which presents a limitation of this method for more

protein stages.

However, we find that since our analysis is restricted to the large protein number regime,

and the noise strength Da is inversely proportional to the production rate rk which is

typically large, that Da is typically very small in both gene states. This means that

the cUCNA probability distribution is almost identical to probability distributions that

assume white noise (cUCNA with τ = 0) or even no colored noise. However, what the

analysis in this section provides is the quantitative reasons why one could necessarily

neglect the contribution of colored noise in model reduction from the full system in Eq.

(4.92) to the simpler system in Eq. (4.93).
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4.7 Conclusion

In this chapter we have explored the addition of colored noise onto the reaction rates for

a cooperative auto-regulatory circuit. Starting from a reduced chemical Fokker-Planck

description, we used the UCNA to derive approximate expressions for the probability

distribution of protein numbers in the limits of fast and slow promoter switching.

The approximation is valid provided the colored noise on the reaction rates is small

and the correlation time is short. By means of stochastic simulations, we verified the

accuracy of the approximate distributions; we also verified the predictions of the UCNA,

namely that under fast promoter switching conditions the addition of colored noise can

induce bimodality whereas under slow promoter switching conditions, noise can destroy

bimodality.

We also have shown how complex models of gene expression can be mapped onto simpler

models with noisy rates. In particular we have shown that: (i) An auto-regulatory

feedback loop with multi-stage protein production, including different stages of mRNA

processing, can be mapped onto an auto-regulatory feedback loop with a single protein

production reaction step having colored noised added to its reaction rate. (ii) A feedback

loop with multi-stage protein degradation can be mapped onto a feedback loop with a

single protein degradation reaction with a fluctuating rate. We have also verified that in

many instances, one cannot simply approximate colored noise with white noise, or else

neglect it entirely, since this does not match behaviour seen from the full underlying

models of multi-stage protein production or degradation.

While here we focused on a self-regulatory example, the UCNA and its conditional

variant (cUCNA) provide an easily extendable analysis to model more complex gene

regulatory networks with fluctuating parameters such as those with cross-regulation

[208, 209, 37]. Our analysis is the first to our knowledge, to analytically find steady

state probability distributions where colored noise is added to a non-linear reaction (the

protein-gene binding reaction) in a gene regulatory context; a previous study applied

the UCNA to study the effects of extrinsic noise in genetic circuits composed of purely

linear reactions [184]. Given that our calculations show that the protein distributions for

auto-regulatory circuits with extrinsic noise on reaction parameters can be dramatically

different than models assuming constant reaction rates, an interesting future research

direction would be to develop UCNA based methods that can directly infer the properties

of colored noise on reaction rates from protein expression data.



Chapter 5

Distinguishing between models of

mammalian gene expression:

telegraph-like models versus

mechanistic models

This chapter has been published as [3] entitled Distinguishing between models of

mammalian gene expression: telegraph-like models versus mechanistic models in the

Journal of The Royal Society Interface. Slight modifications have been made for its

inclusion in this thesis.

5.1 Abstract

Two-state models (telegraph-like models) have a successful history of predicting distribu-

tions of cellular and nascent mRNA numbers that can well fit experimental data. These

models exclude key rate limiting steps, and hence it is unclear why they are able to

accurately predict the number distributions. To answer this question, here we compare

these models to a novel stochastic mechanistic model of transcription in mammalian

cells that presents a unified description of transcriptional factor, polymerase and mature

mRNA dynamics. We show that there is a large region of parameter space where the

first, second and third moments of the distributions of the waiting times between two

consecutively produced transcripts (nascent or mature) of two-state and mechanistic

models exactly match. In this region, (i) one can uniquely express the two-state model

parameters in terms of those of the mechanistic model, (ii) the models are practically

indistinguishable by comparison of their transcript numbers distributions, and (iii) they

are distinguishable from the shape of their waiting time distributions. Our results clarify

the relationship between different gene expression models and identify a means to select

between them from experimental data.

103
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5.2 Introduction

One of the most popular models of gene expression is the telegraph model, a two-state

model where genes are assumed to be either on or off, being able to produce mature

messenger RNA (mRNA) in the on state and having no mature mRNA production in the

off state [35, 41, 210]. Since gene expression is inherently stochastic [9], mathematical

models of the telegraph model often employ probabilistic modelling techniques such as

the chemical master equation [8, 81] or the stochastic simulation algorithm (SSA) [68].

By fitting the steady-state analytical solution of the telegraph model to experimentally

measured distributions of the number of cellular mRNA in single cells, several studies

have estimated the rates of gene switching and of initiation for several mammalian

genes [44, 45, 46, 47, 37]. However, mapping cellular mRNA number to the underlying

transcription kinetics is difficult because fluctuations in this number reflect noise due to

many processes downstream of transcription [211, 120].

In contrast, the number of actively transcribing RNA polymerase II (Pol II) on a gene is

not subject to these complex processes, and hence reveals more information on the details

of transcription [212, 213, 214]. Therefore, unlike mature mRNA statistics, fluctuations

of actively transcribing Pol II provide a direct readout of transcription. Since the speed

of actively transcribing Pol II is approximately constant along a gene and since its

premature detachment is not frequent, it follows that the loss of actively transcribing

Pol II (leading to the production of a mature mRNA transcript) cannot be described by

a first-order reaction (as assumed in the telegraph model for cellular mRNA). Rather

it is much better captured by a delayed degradation reaction where the removal of an

actively transcribing Pol II occurs after a fixed elapsed time since its binding to the

promoter. A recent paper [120] has modified the telegraph model to account for the

aforementioned speciality, a model that we shall refer to as the delayed telegraph model.

This alternative two-state model, unlike the telegraph model, is non-Markovian; while

its mathematical analysis is complex, it can be solved exactly in steady-state to obtain

distributions of the number of bound Pol II. Transcriptional parameters can then be

obtained by fitting these distributions to those obtained experimentally using electron

microscopy [215] or nascent RNA sequencing [216]. Alternatively, since each actively

transcribing Pol II has attached to it an incomplete nascent mRNA, one can also use the

delay telegraph model to numerically calculate the steady-state distribution of nascent

mRNA numbers which can then be fit to distributions obtained using single-molecule

fluorescence in situ hybridisation (smFISH) [217].

Despite their success in predicting distributions of transcript numbers that match those

calculated from experimental data, it is important to remember that both the telegraph

model and the delayed telegraph model do not include a description of all the key rate

limiting steps. In the past decade, several experimental papers have shown the necessity
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of including Pol II pausing and release in models of transcription. Bartman et al. [218]

show experimentally that it is the release of Pol II from the pausing state, and not

the Pol II recruitment rate, that is a key control point for gene expression. In fact,

it is found universally amongst all metazoan genes that the rate of release of Pol II

from pausing is the rate limiting step in transcription [219]. In mammalian cells the

release of Pol II from the paused state is dependent on the activity of several molecules,

including the transcription elongation factor P-TEFb [219, 220, 221]. Specifically in

embryonic stem cells, ChIP-Seq data has revealed that Pol II peaks near genes are at

the promoter-proximal region, and that inhibiting the P-TEFb causes Pol II to remain

in the promoter-proximal region genome-wide [221]. Figures 1 and 2 in [219] provide a

good overview of the key step of transcription, including Pol II pausing and release. The

mechanism of Pol II pausing, in addition to the binding of Pol II and other transcription

factors to the promoter, provides two layers of control over the production of nascent

and mature mRNA. It is also found that expressed genes without a peak of paused Pol

II in one cell type can acquire pausing in a different cell type, therefore genes have the

potential of being regulated by proximal pausing even when the Pol II pausing peak is

absent [220]. Clearly, if Pol II pausing and release is such a key feature of transcriptional

models, the current ambiguity of the mechanisms’ roles in the standard and delayed

telegraph models is a problem in need of a solution.

Thus far, the modelling literature contains few studies where transcription is modelled

incorporating Pol II pausing and release. One model, found in [170], includes pausing

and release in a three-state gene model based on the findings of [218], where the three

states represent (i) an inactive gene state D0, (ii) a “burst initiated” state D10 where

the gene is bound to transcription factors and enhancers, and (iii) a gene state D11 in

which the Pol II is bound and paused. Mature mRNA is produced in the transition from

D11 −→ D10; this reaction should actually produce nascent mRNA but in this model, it

is assumed that the nascent lifetime is so short that a nascent mRNA description can

be ignored. By ignoring nascent mRNA fluctuations and assuming that the pausing

and unpausing of the Pol II is very fast, it was shown in [170] that the mature mRNA

distribution from this model is well approximated by that from the telegraph model.

Two other recent studies [222, 223] also explore similar models albeit in the context of

transcription reinitiation [224].

In summary, it is currently not so clear why the telegraph model is so successful in fitting

experimental mature mRNA distributions, even though it misses important reaction

steps which are key control points for gene expression. It is unclear if the assumptions

made in [170] are necessary to guarantee that the true mature mRNA distribution is well

approximated by the telegraph model; it could well be that these are sufficient but not

necessary conditions. Since this study did not derive nascent mRNA statistics, nothing
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can be inferred about the reasons underlying the success of the delayed telegraph model

in fitting experimental nascent mRNA distributions. A related and important question

still remains: if the two-state and more detailed mechanistic models of transcription

cannot be distinguished from distributions of the number of transcripts, is there another

statistic that is useful to distinguish between them? In this study we take a first step at

answering these questions.

The chapter is divided as follows. In Section 5.3 we introduce the standard and delayed

telegraph models (two-state models), as well as a mechanistic multi-state gene model

that provides a stochastic description of transcription factor, Pol II and mature mRNA

dynamics. Then, in Section 5.5 we explore the relationship between the two-state and

mechanistic models by comparing the distributions of their waiting times between two

consecutive transcripts. We show that two-state models can always be told apart from

the mechanistic model from the shape of the waiting time distribution, even when

they are indistinguishable from a comparison of their number distributions. We also

derive conditions under which the moments of the waiting time distribution (up to

third order) of the mechanistic model agree with those of two-state models, leading to

expressions relating the parameters of the latter with those of the former. In Section 5.6

we perform a sensitivity analysis using the aforementioned expressions to understand

which parameters of the mechanistic model are the parameters of two-state model most

sensitive to. This uncovers non-trivial correlations between the parameters of two-state

models. In Section 5.7 we show that the conclusions previously based on waiting time

distributions agree with those obtained using model reduction methods based on number

statistics. Finally, in Section 5.8 we conclude the study and discuss our results in the

context of the literature.

5.3 Models of transcription

In this section, we start by introducing an effective reaction scheme for a mechanistic

model of transcription describing activator, Pol II, and mature mRNA dynamics. Then,

we introduce the standard and delayed telegraph models as the two-state models whose

dynamics we will attempt to match to that of mature mRNA and actively transcribing

Pol II in the mechanistic model, respectively.
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5.3.1 A non-Markovian mechanistic model of transcription

The mechanistic model of transcription in metazoan cells that we henceforth consider is

defined in terms of the following effective reactions:

U
a−⇀↽−
a′
U⋆ b−⇀↽−

b′
U⋆⋆, U⋆⋆ c−→ U⋆ +A, A =⇒

τ
M

d−→ ∅. (5.1)

State U describes a gene state in which Pol II cannot access the promoter region at

the beginning of a gene since activator binding is impaired by chromatin [225, 226].

In contrast, state U⋆ describes a state where activator binding has reorganised the

local nucleosome structure [226], allowing Pol II to access the promoter region along

with all transcription factors, co-activators, unphosphorylated Pol II and initiation

factors needed for transcription initiation to start. This state is coincident with the

dynamic promoter condensate (or transcription factories) proposed in various papers

[227, 228, 229]. Transcription factors recruit cofactors and Pol II, and hence drive the

(reversible) change of state from U to U⋆.

Initiation starts with the binding of Pol II to the promoter; it then pauses promoter-

proximally [230]. These processes are modelled by the change of state from U⋆ to U⋆⋆,

where the latter is the paused state. Once the pause is released, Pol II begins moving

away from the promoter region, thus starting productive elongation that leads to a Pol

II molecule with a nascent mRNA tail (even paused Pol II has a tail but it is very short

and we will hence ignore it). Note that the nascent transcript is not a fully formed

mRNA transcript since the length of the tail attached to Pol II increases as elongation

progresses. The number of Pol II bound to the gene is equal to the number of nascent

mRNA irrespective of their lengths. We call any Pol II undergoing productive elongation

as an active Pol II (A), which implies that the change of state from paused U⋆⋆ to

unpaused U⋆ must simultaneously lead to the production of an A particle. Note that

the binding of another Pol II to the promoter is not possible when there is already a

Pol II paused promoter-proximally due to volume exclusion imposed by the latter [231].

Elongation (and termination) finishes after a fixed elapsed time τ leading to the

detachment of Pol II from the gene and the dissociation of the mRNA tail from

Pol II. We hence call the fully formed mRNA a mature transcript M and elongation is

described by the effective reaction A⇒M (the double horizontal arrow is here used to

denote delayed degradation which occurs after a fixed time τ). Note that the change from

A to M cannot be modelled by a first-order reaction because elongation involves the

movement of Pol II along the gene with an approximately constant velocity and hence

the lifetime of an active Pol II molecule is not exponentially distributed [120, 201]. Note
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Figure 5.1: Illustration of system (1). The U state describes the state where both the activator binding
site (ABS) and the promoter are unbound. In the U∗ state, the activator is bound to the ABS meaning
the Pol II can bind to the promoter. Pol II has been recruited to the promoter and pauses in state
U∗∗. Transitions from U∗∗ to U∗ either result from premature termination or else pause release and
the subsequent production of an actively transcribing Pol II. Elongation (and termination) takes a
deterministic time τ after which the mature mRNA is produced. The latter is subsequently degraded in
the cytoplasm. For more details see the main text.
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that likely there are fluctuations in the elongation time (the lifetime of an active Pol II

molecule) but we will ignore them since (i) we could not find single-cell measurements

of the distribution of the elongation time for a given gene; (ii) theory suggests these

fluctuations are very small for long genes with low transcription rates [201].

Note that paused Pol II instead of leading to productive elongation can also undergo

premature termination [219] i.e., the paused Pol II releases the short nascent mRNA

tail attached to it (which is rapidly degraded) and the polymerase is recycled into

the free Pol II pool. These reactions may happen quite often [232, 233]; it is thus

quite unlikely that they simultaneously lead to a dissociation of the dynamic promoter

condensate since otherwise the efficiency of gene expression would become extremely

low. Hence we assume that premature termination leads to a change from the paused

state U⋆⋆ to the unpaused state U⋆ but do not consider transitions of the type U⋆⋆ to

the non-permissive/inactive state U .

Finally, the mature transcripts are removed via various mRNA decay pathways in the

cytoplasm [234, 235]. Since many mammalian genes follow single-exponential decay

kinetics [236], we model mature mRNA turnover via a first-order reaction of the form

M −→ ∅.

We emphasise that a speciality of our model is the reaction U⋆⋆ −→ U⋆ +A. This involves

a change of gene state each time a transcription event occurs, whereas common models of

gene expression in the literature do not have such a coupling [35, 210, 120, 22, 237, 238].

As explained above, the change of state is necessary to model the fine-scale details of

the molecular biology, namely the fact that unpausing a Pol II frees the promoter and

enables the binding of a new Pol II to it. Unpausing of Pol II is a key rate limiting step

since the mapping of Pol II using chromatin immunoprecipitation (ChIP) revealed peaks

of Pol II near many promoters [239, 240, 221]. In fact, this accumulation of Pol II near

the promoters indicates that the relative rates of premature termination (b′) and pause

release (c) are much slower than rates of recruitment and entry into the paused state

(b). Since regulatory processes often target rate-limiting steps, the release of paused Pol

II has emerged as a central point of gene expression control [219, 218].

We note that while the mechanistic model described incorporates more biological detail

than the standard two-state models, nevertheless it is to be kept in mind that it is still

based on some assumptions because the actual mechanisms of pausing and how variable

it is between species is still an ongoing discussion in the experimental community. For

instance Pol II volume exclusion may not be enough to avoid the immediate recruitment

of other polymerases.
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A master equation can be written down which describes the stochastic dynamics of

the mechanistic model; its form is quite different than the standard chemical master

equation that is popular in the literature of gene expression [81]. The right hand side

of the latter equation is only a function of the present time t. In contrast, the master

equation describing our model has a right-hand side that is a function of not only the

present time t but of the history of the process in the interval [t− τ, t]. This is because

of the fixed time τ between the release from the paused state and the production of a

mature transcript. The dependence of the dynamics of the system on its history means

that our model is non-Markovian [73].

5.3.2 Two-state models of transcription: telegraph and delay telegraph models

In the literature, two models are commonly used to (separately) describe active Pol II

and mature mRNA dynamics:

G
σu−⇀↽−
σb

G⋆, G
ρ−→ G+A, A =⇒

τ
∅, (5.2)

and

G
σu−⇀↽−
σb

G⋆, G
ρ−→ G+M, M

d−→ ∅. (5.3)

The chemical master equation describing the stochastic dynamics of the systems defined

by schemes (5.2) and (5.3) were exactly solved in steady-state by Xu et al. [120] and

Peccoud and Ycart [35], respectively. Model (5.3) also has a transient solution which

is reported in [41]. Model (5.3) is often called the telegraph model of gene expression;

by analogy, we shall refer to Model (5.2) as the delayed telegraph model. Note that

the former is a Markov model while the latter is non-Markov in character for the same

reason as described above for the mechanistic model.

Clearly, the difference between the two models is how the transcripts are removed from

the system: active Pol II is removed after a fixed elapsed time τ (due to the termination

of elongation which results in a mature transcript), whereas mature mRNA degradation

follows first-order kinetics. Both models postulate that at any point in time, the gene

is in one of two states: an active state G from which transcription can occur and an

inactive state G∗. As argued by Bartman et al. [218] it is unclear what is the precise

biological meaning that should be associated with these two states because the reaction

in these models cannot be clearly associated with polymerase processes that are central

to transcription.
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As we argued in the Introduction, both telegraph and delayed telegraph models have been

shown to accurately replicate experimental distributions of mature and nascent mRNA

numbers. This leads us to the following question: could it be possible that the stochastic

dynamics of our mechanistic model defined by (5.1) are accurately approximated by

these simpler models? To be more precise, is there a set of effective transcriptional

parameters ρ, σu, σb of the two-state models that predict the same (or very similar)

distributions of active Pol II and mature mRNA numbers in the mechanistic model.

If there is such a set of effective parameters, ideally we would also want expressions

showing their relationship to the parameters a, a′, b, b′, c of the mechanistic model.

5.4 Exact solutions of the mechanistic model

In this Section we show how to solve the dCME describing the mechanistic model in

Eq. (5.1). We note that the solution to the delay telegraph model (in Eq. (5.2)) has

been provided in [241], and that the solution to standard telegraph model (in Eq. (5.3))

is a special case of Example 2 explored in Section 2.2 of this thesis.

5.4.1 Marginal steady state solution for M

We begin by solving for the marginal steady state generating function of M . We do this

by identifying M with a simpler reaction network that removes the presence of A,

U
a−⇀↽−
a′
U⋆ b−⇀↽−

b′
U⋆⋆, U⋆⋆ c−→ U⋆ +M, M

d−→ ∅. (5.4)

Note that identification of the dynamics of M with this reaction scheme applies only at

steady state, and results from the key property that A is elongated deterministically.

The reason that this holds at steady state is that since A is a deterministic intermediate,

the dynamics of M in Eq. (5.1) are simply a time delayed version of the steady state

dynamics observed in Eq. (5.4). The CME describing this reaction scheme can be solved

using standard generating function methods introduced in the preliminaries. In this case

the generating function G(z) = ∑
n P (n)zn, where P (n) is the steady state distribution

of n, is given by,

G(z) = 0F2

(
; {λ1 − 1, λ2 − 1}; β3

d3 (z − 1)
)
, (5.5)

where 0F2 is a type of hypergeometric function [242], and where we have defined,

β1 = 3d+ a+ a′ + b+ b′ + c,

β2 = d(β1 − 2d) + a′(b+ c) + a(b+ b′ + c) + bc,

β3 = abc,
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and λ1 and λ2 are the solutions to the following simultaneous equations,

λ1 + λ2 + 1 = β1/d,

λ1λ2 = β2/d
2.

The probability distribution is then given by,

P (n) = 1
n!
dnG(z)
dzn

∣∣∣
z→0

(5.6)

=
(
β3/d

3)n
n!(λ1 − 1)n(λ2 − 1)n

· 0F2

(
; {λ1 + (n− 1), λ2 + (n− 1)};−β3

d3

)
, (5.7)

and (a)n is a falling factorial.

5.4.2 Marginal steady state solution for A

In this Section we derive and solve the dCME describing active Pol II dynamics at

steady state. The dynamics of A is described by the following reaction scheme,

U
a−⇀↽−
a′
U∗, U∗ b−⇀↽−

b′
U∗∗, U∗∗ c−→ U∗ +A, A =⇒

τ
M. (5.8)

In the following we utilise the notation that P0(n, t), P1(n, t) and P2(n, t) are the

respective probabilities of being in gene states U , U∗ and U∗∗ with partial state vector

(n, t). Note that the only non-Markovian reaction here is the delay τ accounting for

transcription elongation in which nascent mRNA is processed and becomes mature

mRNA.

Derivation of the dCME

We now derive the dCME from first principles. One can split the contributions to

Pi(n, t+ ∆t) into three parts: (a) probability of an instantaneous reaction occurring in

the interval [t, t+ ∆t); (b) the probability of a delayed reaction occurring in [t, t+ ∆t);
and (c) the probability that no reaction occurs in [t, t + ∆t). Contributions (a) and

(c) are easy to calculate, and one can do so as they would for the standard CME.

Contribution (b) however is more difficult and requires one to consider the history of

the process.

A careful consideration of the effect of an A production event at t− τ + ∆t, and it’s

effect on Pi(n, t+ ∆t) involves following the state vector transitions from t− τ to t+ ∆t:

1. First we have: (2, n′, t− τ)→ (1, n′ + 1, t− τ + ∆t).
2. Then: (1, n′ + 1, t− τ + ∆t)→ (i, n+ 1, t).
3. Finally: (i, n+ 1, t)→ (i, n, t+ ∆t).
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The first of these contributions occurs with probability d ·∆t · P2(n′, t− τ), the second

occurs with the conditional probability Pi(n+ 1, t|1, n′ + 1, t− τ + ∆t), and the third

occurs with probability 1 (since the reaction is deterministically delayed). One can

simplify the conditional probability Pi(n+ 1, t|1, n′ + 1, t− τ + ∆t) by noting that all n′

active Pol IIs present prior to t− τ + ∆t will have already been processed to M by time

t; hence, Pi(n+ 1, t|1, n′ + 1, t− τ + ∆t) is equivalent to the probability of producing n

active Pol IIs in a time τ −∆t. We denote this probability as:

P̃i(n, τ −∆t) = Pi(n+ 1, t|1, n′ + 1, t− τ + ∆t),

with the initial conditions P̃1(n, 0) = δn,0, P̃0(n, 0) = P̃2(n, 0) = 0. Taking the product

of these three contributions to (b) together, we find that the probability of having

(n+ 1, t) and (n, t+ ∆t) is:

Pi(n, t+ ∆t;n+ 1, t) = d ·∆t · P̃i(n, τ −∆t)
∑
n′

P2(n′, t− τ),

= d ·∆t · P̃i(n, τ −∆t)P2(t− τ), (5.9)

where P2(t − τ) is the total probability of being in gene state U∗∗ at t − τ . Finally,

taking the contributions from (a), (b) and (c) we state the probability conservation

equation for each Pi(n, t+ ∆t),

P0(n, t+ ∆t) =(1− a∆t)P0(n, t) + a′∆tP1(n, t)

+ d ·∆t · P2(t− τ)(P̃0(n, τ −∆t)− P̃0(n− 1, τ −∆t)), (5.10)

P1(n, t+ ∆t) =(1− (a′ + b)∆t)P1(n, t) + a∆tP0(n, t) + b′∆tP2(n, t)

+ d ·∆t · P2(t− τ)(P̃1(n, τ −∆t)− P̃1(n− 1, τ −∆t)), (5.11)

P2(n, t+ ∆t) =(1− (b′ + d)∆t)P2(n, t) + b∆tP1(n, t)

+ d ·∆t · P2(t− τ)(P̃2(n, τ −∆t)− P̃2(n− 1, τ −∆t)), (5.12)

and use them to derive the dCMEs for the activator in the limit ∆t→ 0:

∂tP0(n, t) =a′P1(n, t)− aP0(n, t) + d · P2(t− τ)(E1 − 1)P̃0(n− 1, τ), (5.13)

∂tP1(n, t) =b′P2(n, t)− (a′ + b)P1(n, t) + aP0(n, t) (5.14)

+ d ·E−1P2(n, t) + d · P2(t− τ)(E1 − 1)P̃1(n− 1, τ),

∂tP2(n, t) =bP1(n, t)− (b′ + d)P2(n, t) + d · P2(t− τ)(E1 − 1)P̃2(n− 1, τ), (5.15)
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where Ex is the step operator defined by Exf(n) = f(n + x). Coupled to this set of

dCMEs we will additionally have a set of conditional master equations describing the

probabilities of having produced n active Pol II in a time t for each respective gene

state:

∂tP̃0(n, t) =a′P̃1(n, t)− aP̃0(n, t), (5.16)

∂tP̃1(n, t) =b′P̃2(n, t)− (a′ + b)P̃1(n, t) + aP̃0(n, t) + d ·E−1P̃2(n, t), (5.17)

∂tP̃2(n, t) =bP̃1(n, t)− (b′ + d)P̃2(n, t), (5.18)

with the initial conditions P̃1(n, 0) = δn,0, P̃0,2(n, 0) = 0 as argued above.

Generating function solution to the dCME

Our first task is to find P2(t− τ). Taking the sum of Eqs. (5.13)–(5.15) over all n we

get the set of coupled equations defining the marginal probabilities of being in each

gene state, Pi(t) = ∑
n Pi(n, t), explicitly:

∂tP0(t) =a′P1(t)− aP0(t), (5.19)

∂tP1(t) =(b′ + d)P2(t)− (a′ + b)P1(t) + aP0(t), (5.20)

∂tP2(t) =bP1(t)− (b′ + d)P2(t). (5.21)

Solving these equations at steady state and invoking the normalisation condition∑3
i=1 Pi(t) = 1, we find the probability of being in the U∗∗ state is:

h ≡ P2(t→∞) = ab

(a′ + a)(b′ + d) + ab
. (5.22)

Our main interest is in solving Eqs (5.13)–(5.15), but since P0(n, t), P1(n, t) and P2(n, t)
are coupled to P̃0(n, τ), P̃1(n, τ) and P̃2(n, τ) (and not vice-versa) we must first solve

Eqs. (5.16)–(5.18). Defining the generating functions G̃i(z, t) = ∑
n z

nP̃i(n, t) for i ∈
{0, 1, 2}, Eqs (5.16)–(5.18) transform into:

∂tG̃0 =a′G̃1 − aG̃0, (5.23)

∂tG̃1 =aG̃0 + b′G̃2 + dzG̃2 − (a′ + b)G̃1, (5.24)

∂tG̃2 =bG̃1 − (b′ + d)G̃2, (5.25)
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where we have dropped the functional dependence of Gi on (z, t) for brevity. Defining

the total generating function as G̃ = ∑
i G̃i, one can sum together Eqs. (5.23)–(5.25)and

rearrange to give:

G̃2 = ∂tG̃

d · (z − 1) . (5.26)

Further manipulating Eqs. (5.23)–(5.25) we find an equation exclusively in terms of G̃:

∂3
t G̃+ q1∂

2
t G̃+ (q2 + q3z)∂tG̃+ q4(1− z)G̃ = 0, (5.27)

where we have defined

q1 =a+ a′ + b+ b′ + d,

q2 =a′(b′ + d) + a(b+ d+ b′),

q3 =− bd, q4 = abd.

Using the exponential ansatz G̃(z, t) ∼ eλ(z)t (since the ODE is homogeneous and

coefficients of the derivatives are independent of t) one finds the solution to (5.27):

G̃(z, t) =
3∑

i=1
Qi(z)eλi(z)t, (5.28)

where the λi(z) are the solutions to the cubic equation:

λ(z)3 + q1λ(z)2 + (q2 + q3(z − 1))λ(z) + q4(1− z) = 0,

and the Qi(z) are given by:

Qi(z) = bd(z − 1) + λj(z)λk(z)
(λj(z)− λi(z))(λk(z)− λi(z))

, (5.29)

where i, j, k are distinct and i, j, k ∈ {1, 2, 3}, and Qi(z) were chosen such that the initial

conditions are satisfied. Note that one can verify computationally that the normalisation

condition G̃(z = 1, t) = 1 is satisfied.

We are now in place to solve the dCMEs (5.13)–(5.15). First, we transform them into

their corresponding generating function equations at steady-state:

a′G1 − aG0 − d · h · (z − 1)G̃0(τ) = 0, (5.30)

aG0 + b′G2 + dzG2 − (a′ + b)G1 − d · h · (z − 1)G̃1(τ) = 0, (5.31)

bG1 − (b′ + d)G2 − d · h · (z − 1)G̃2(τ) = 0. (5.32)
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Summing together these generating function equations one arrives at:

G2 = h · G̃(τ). (5.33)

Through further manipulation of Eqs. (5.30)–(5.32), and defining G = G0 +G1 +G2,

we arrive at the solution to the activator delay chemical master equation (for the total

generating function):

G(z, τ) = h

ab
·

3∑
i=1

(λi(z)(q1 + λi(z)) + q2 + q3(z − 1))Qi(z)eλi(z)τ . (5.34)

Through z derivatives of G(z, τ) one can obtain the probability distribution and the

moments as seen in Section 2.2.

5.5 Relationship between two-state and mechanistic models

5.5.1 When can the two-state and mechanistic models be matched? A waiting

time distribution perspective

In Appendix ?? and C.2, we calculate the distribution of the time between the production

of two consecutive M (A) molecules for the mechanistic and (delayed) telegraph models.

Using these distributions we can compute the square of the coefficient of variation

of the time between two consecutive M (or A) production events. Throughout this

chapter, we will refer to this time between production events as the waiting time. In line

with previous usage in the single enzyme molecule literature [54], we shall refer to the

coefficient of variation of the waiting time distribution as the randomness parameter,

which is given by:

Rtele = ⟨t
2⟩ − ⟨t⟩2

⟨t⟩2
= 1 + 2ρσu

(σb + σu) 2 . (5.35)

for the telegraph or delayed telegraph models and by:

Rmec = ⟨t
2⟩ − ⟨t⟩2

⟨t⟩2
= 1 + 2bc

(
a′ (b′ + c− a)− a2)

(a′ (b′ + c) + a(b+ b′ + c))2 , (5.36)

for the mechanistic model. Note that the waiting time statistics for A and M in the

two-state models are the same because the waiting time distribution calculation is not

sensitive to the mode of degradation (first-order or delayed) since the absorbing state

corresponds to the production of a new mature mRNA transcript or a new active Pol II
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which necessarily always precedes its degradation or removal. In addition to this reason,

the statistics are the same for active Pol II and mature mRNA in the mechanistic model

also because of the fixed time τ between the unpausing of a Pol II and the production

of a mature mRNA.

Note that while the randomness parameter for A or M is greater than 1 for all parameter

values (see Eq. (5.35)) in the two-state models, the same statistical measure can be less

than or greater than 1 in the mechanistic model (see Eq. (5.36)). In fact, evaluating the

latter equation for over a million random values of parameters suggests that Rmec ≥ 1/2.

The 2 appears because in our model, it is the smallest number of reaction steps between

A production events (U⋆ → U⋆⋆ → U⋆ + A). Similar results have been derived in the

context of single molecule enzyme kinetics [54].

It follows that the two-state models can only capture the waiting time statistics of the

mechanistic model (up to second order) when Rmec ≥ 1 which is the case when the

following condition is satisfied

b′ + c ≥ a

a′ (a+ a′). (5.37)

This implies that the conditions which favour a description of the mechanistic model by

the two-state models are: (i) premature termination and unpausing from the paused

promoter-proximal state must be fast i.e., large b′ + c; (ii) transcription factor binding

to DNA elements and the reverse unbinding reaction must be slow i.e., small a+ a′; (iii)

transcription factor unbinding is fast compared to transcription factor binding i.e., a/a′

is small. Note that the condition given by Eq. (5.37) is not a function of b, the rate at

which polymerase binds the promoter and moves to the proximal paused state (see later

for an explanation of the role of b).

5.5.2 Analytical expressions for the effective parameters of the two-state models

Matching the first three moments of the waiting time distribution of the times between

consecutive M or A production events of the telegraph/delayed telegraph model (given

by Eqs. (C.5)) with those calculated using the mechanistic model (given by Eq. (C.18)

evaluated for i = 1, 2, 3), we obtain a set of 3 simultaneous equations for the effective

parameters of the two-state models ρ, σu, σb. The solution of these equations gives:

ρ = bca′ (∆a′ + a2)
a′ (a′ (∆a′ + a2 + 3a∆ + ∆(b+ ∆)) + a2(2a+ b+ 2∆)) + a4 ,

σu = ∆3 (a′)4

(∆a′ + a2) (a′ (a′ (∆a′ + a2 + 3a∆ + ∆(b+ ∆)) + a2(2a+ b+ 2∆)) + a4) ,

σb = a∆a′

∆a′ + a2 , (5.38)
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Figure 5.2: Comparison between the molecule number distributions of active Pol II and mature mRNA
distributions of the two-state (reduced) models ((5.2) and (5.3)) and the mechanistic model (5.1).
For a particular choice of parameters of the mechanistic model, Eq. (5.38) gives the two-state model
parameters. In (A-C), for three different parameter sets (one per column), we show that the mechanistic
model describing the number of active Pol II molecules is well approximated by the exact steady-stateƒ
solution of the delay telegraph model [120] evaluated with the effective parameters. (D-F) show a similar
level of agreement between the mechanistic and two-state models but instead for the mature mRNA
distributions, where the two-state model is now the telegraph model whose exact steady-state solution
can be found in [35]. Steady-state distributions of the mechanistic model were obtained using the delay
SSA (Algorithm 2 of [117]) with 104 samples. In (G-I) we show the corresponding distributions of
the waiting time between two consecutive active Pol II (or mature mRNA) production events for the
two-state and mechanistic models. The waiting time distributions for the mechanistic and two-state
models are calculated by taking the inverse Laplace transform of Eq. (C.4) and Eq. (C.17) respectively.
Clearly, the models can be distinguished through their waiting time distributions even when their number
distributions are almost indistinguishable. Parameters of the mechanistic model and the corresponding
effective parameters for two-state models are: (A) a = 0.001 s−1, a′ = 0.001 s−1, b = 0.16 s−1, b′ = 0.016
s−1, c = 0.24 s−1 mapped to σu = 0.0007 s−1, σb = 0.001 s−1, ρ = 0.092 s−1; (B) a = 0.144 s−1,
a′ = 0.032 s−2, b = 0.016 s−1, b′ = 0.56 s−1, c = 0.24 s−1 mapped to σu = 3.8 × 10−8 s−1, σb = 0.002
s−1, ρ = 0.004 s−1; (C) a = 0.032 s−1, a′ = 0.032 s−1, b = 0.16 s−1, b′ = 0.016 s−1, c = 0.32 s−1

mapped to σu = 0.012 s−1, σb = 0.029 s−1, ρ = 0.086 s−1. The mature mRNA decay rate is d = 0.0016
s −1, and the delay time due to elongation is τ = 273.62 s.
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where ∆ = b′ + c − a − (a2/a′). Note that if the condition given by Eq. (5.37) is

satisfied, then ∆ ≥ 0 and hence the effective parameters defined by Eqs. (5.38) are

positive and physically meaningful. If the condition is not satisfied, then one of these

effective parameters is negative which means that there are no two-state models that

can approximate the mechanistic model’s waiting time moments up to third-order.

We emphasise that the effective parameters are the same for the telegraph and delay

telegraph models because the waiting time calculation is insensitive to the mode of decay

(first-order or delayed). In Fig. 2(A-F) we compare the steady-state number distribution

of the two-state models (which is analytically derived in [35] and [120]) evaluated with

these effective parameters (for ∆ > 0) and the steady-state number distribution of the

mechanistic model (which is obtained from stochastic simulations modified to take into

account fixed time delays [117]). In the cases shown, the two-state models provide an

excellent match to the mechanistic model for both unimodal and bimodal distributions

of active Pol II and mature mRNA numbers. Note that since most of the parameters in

the mechanistic model have not been measured directly, we chose parameters such that

the number distributions looked similar to those measured experimentally and such that

the average number of mRNA is larger than the average number of active Pol II (the

former can range from few tens to few hundreds whereas the latter is at most few tens)

[32, 45].

The case of fast switching between U⋆ and U⋆⋆

Where min(b, b′)≫ max(a, a′), the two states U⋆ and U⋆⋆ can be effectively subsumed

into a single super state W and the system dynamics amounts to switching between

an inactive state U and an active state W . Physically, one sees that this arises since in

this limit transitions between U⋆ and U⋆⋆ occur almost instantaneously compared to

transitions between U and U⋆. The transition rate from U to W is the same as from U

to U⋆ and hence in the two-state model this implies

σb = a. (5.39)

The transition rate from W to U must be equal to the transition rate from U⋆ to U

multiplied by the probability of being in state U⋆ given that currently the effective

system is in state W . This implies

σu = a′ b′

b+ b′ . (5.40)
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Similarly, the effective production rate is the rate of producing active Pol II from state

U⋆⋆ multiplied by the probability of being in this state given that currently the effective

system is in state W . This implies

ρ = c
b

b+ b′ . (5.41)

These results can be formally obtained from Eqs. (5.38) by choosing b′ = γb (where

γ is a constant) and taking the limit b → ∞. The case of fast switching in a similar

three-state model of gene expression (without an explicit description of active Pol II

dynamics) has been previously studied in [170]. While it is obvious that fast switching

between U⋆ and U⋆⋆ simplifies to an effective two-state model, our condition (5.37)

shows that fast switching is sufficient but not a necessary condition for a two-state

model to describe the dynamics of the mechanistic model. We note that fast switching

between U⋆ and U⋆⋆ is unlikely to be the general case since the average time scale of

Pol II pausing is ∼ 7min [220] and almost 1 hour in a small subset of genes[243]. This

indicates Pol II pausing is very stable and “not the consequence of fast, repeated rounds

of initiation and termination” [220].

Distinguishing between two-state and mechanistic models using waiting time distribu-

tions

It is interesting to note that while for ∆ ≥ 0 the two-state and mechanistic models are

practically indistinguishable by comparison of their number distributions, they can be

always distinguished by the distribution of the time between consecutive active Pol II or

mRNA production events. In particular, in Fig. 5.2(G-I) we show that while f(t), the

waiting time distribution between consecutive production events, is a monotonically

decreasing function for the two-state models, it has a peak at a non-zero value of time

for the mechanistic model. Another distinguishing feature is that for two-state models,

f(0) is non-zero while for the mechanistic model it is exactly zero. The latter feature

can be explained as follows. For two-state models, since there is no change in the gene

state when production occurs, hence there is no lower bound on how short the time

between two consecutive production events can be. However, in the mechanistic model, a

production event is accompanied by a change of state (from U⋆⋆ to U⋆), therefore there

is a finite non-zero time to switch back to state U⋆⋆ from which the next production

event occurs. Consequently, for the mechanistic model f(0) must be zero.
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Figure 5.3: The waiting time distribution of the mechanistic model as a function of the rate parameter
b (which controls the binding of Pol II to the promoter and the entry into the promoter-proximal
state). The waiting time distribution of the mechanistic model is calculated by taking the inverse
Laplace transform of Eq. (C.17). Note that as b increases, the peak moves closer to zero and the waiting
time distribution of the mechanistic model approaches the waiting time distribution of the two-state
model (calculated by taking the inverse Laplace transform of Eq. (C.4)). The parameter b is changed as
described in the legend and the rest of the parameters are a = 0.1 s−1, a′ = 0.1 s−1, b′ = 4 s−1, c = 10
s−1. The parameters of the two-state model are calculated from Eqs. (5.38).

By this reasoning, it follows that the mode should be close to zero whenever the state

U⋆⋆ is recovered rapidly after an active Pol II production event, which occurs when b is

large. In Fig. 5.3 we confirm this intuition and show that for the mechanistic model as

we increase b, the waiting time distribution of the two-state model better approximates

the waiting time distribution of the mechanistic model. Note that a log-scale is used on

the x-axis to emphasise that there are always differences between the mechanistic and

two-state models for small values of t.

5.6 Sensitivity analysis

Equations (5.38) allow us to understand how the parameters of the mechanistic model

influence the effective parameters of the two-state models. We define the ordered set

of mechanistic model parameters as θmec = {a, a′, b, b′, c} and the ordered set of the

two-state model parameters as θtele = {ρ, σu, σb}. In Table 5.1, we show the sign of the

derivative of a parameter in a two-state model with respect to changes in the parameter

of the mechanistic model (when ∆ ≥ 0). For example, the first row shows the sign of

the derivative of ρ with respect to a, a′, b, b′ and c. A positive (negative) sign for the

pair (ρ, a) indicates that an increase in a leads to an increase (decrease) in ρ. We also

show the same but for the burst size β = ρ/σu, a commonly cited measure equal to the

amount of mRNA produced while the gene is in the on state (in the two-state models).

Note that while the sign is fixed for most cases, in three instances the sign can flip. There

is also a case where one of the two-state model parameters is independent of one of the
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a a′ b b′ c

ρ +/- - + - +

σu - + - + +

σb +/- + 0 + +

β=ρ/σu + - + - +/-

Table 5.1: Signs of the derivatives of the two-state effective parameters ρ, σu and σb with
respect to the mechanistic model parameters a, a′, b, b′ and c. Expressions for the effective
parameters are given by Eq. (5.38).

parameters of the mechanistic model (marked with a 0). Due to the complicated nature

of Eqs. (5.38) it is difficult to deduce the signs in Table 5.1 using simple arguments,

however in some cases it can be done. For example, the relationship of ρ with respect to

parameters b, b′ and c is intuitive since: (i) increasing b increases the time in the U⋆⋆

state meaning production of A (or M) happens more often; (ii) decreasing b′ has the

opposite effect, meaning production of A (or M) occurs less often; and (iii) increasing c

obviously increases the production rate of A (or M) and hence increases the predicted

value of ρ.

Next, we investigate the sensitivities of the parameters θtele of the two-state model to

the parameters of the mechanistic model θmec. For this purpose, we randomly selected

103 parameter sets from a log-scaled space in the θmec parameters, accepting only those

parameter set combinations that came within 2 experimental errors of the measurements

of Oct4 gene: ρ = 3.2 × 10−2 ± 1.0 × 10−2 s−1, σu = 3 × 10−3 ± 2 × 10−3 s−1 and

σb = 1.5 × 10−4 ± 0.5 × 10−4 s−1 [32]. We also did this for the Nanog gene whose

measurements were: ρ = 1.3× 10−2 ± 0.3× 10−2 s−1, σu = 1.2× 10−4 ± 0.2× 10−4 s−1

and σb = 3.2 × 10−5 ± 0.3 × 10−5 s−1. A log-scaled parameter space was used such

that various combinations of mechanistic model parameter timescales could be easily

explored. The ranges of the mechanistic model parameters that we explored were

θmec
i ∈ [10−4, 10] s−1 for the Oct4 gene and θmec

i ∈ [10−5, 10−1] s−1 for the Nanog gene.

The sensitivities calculated are the absolute values of the relative sensitivities given by,

sen(θtele
i , θmec

j ) =
∣∣∣∣∣θ

mec
j

θtele
i

dθtele
i

dθmec
j

∣∣∣∣∣ =
∣∣∣∣∣ d(log(θtele

i ))
d(log(θmec

j ))

∣∣∣∣∣ , (5.42)

where sen(θtele
i , θmec

j ) is the magnitude of the relative sensitivity of θtele
i with respect to

θmec
j .

As we show in Fig. 5.4, we find that for both genes, (i) the initiation rate ρ of the

two-state models is most sensitive to parameters b and c in the mechanistic model

i.e., parameters that control the rate of Pol II binding, of entering and leaving the

promoter-proximal paused state; (ii) the rate of switching off of the two-state models σu

is most sensitive to parameter a′ (controlling transcription factor unbinding) and also
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to parameters b, c which control the initiation rate; (iii) the rate of switching on of the

two-state models σb is most sensitive to parameter a (controlling transcription factor

binding) but also to parameters a′, c which control the the rate of switching off and the

initiation rate. In Fig. 4, we also show which parameters of the mechanistic model are the

three parameters of the two-state model least sensitive to. This analysis identifies how

“microscopic” parameters of the mechanistic model affect the “macroscopic” parameters

of the two-state models. More importantly, it shows that the latter are typically correlated

due to their dependence on common microscopic parameters.

5.7 Model reduction using number statistics or three-state models

Thus far, we have explored model reduction solely using waiting time statistics. Al-

ternatively, one can match two-state and mechanistic models using moments of the

number of molecules. As well, one can match three-state models and mechanistic models

using waiting time or number statistics. In this section, we explore these alternative

perspectives.

5.7.1 Obtaining reduced models with two states using number statistics

We begin by finding the Fano factor (defined as the variance divided by the mean) of the

active Pol II and mature mRNA numbers in both the two-state and mechanistic models.

In Appendices C.3 and C.4, we derive expressions for the mean and variance of active

Pol II and mature mRNA numbers in steady-state conditions for both the mechanistic

and two-state models (for a test of their accuracy versus stochastic simulations using

the delay SSA see Table C.1). The Fano factor of the two-state models is easily proved

to be always greater than 1. Specifically, for the delayed and standard telegraph models,

we have respectively:

FFdtele
A = 1 +

2ρσu

(
e−(σb+σu)τ − 1

)
τ (σb + σu) 3 + 2ρσu

(σb + σu) 2 , (5.43)

FFtele
M = 1 + ρσu

(σb + σu) (σb + d+ σu) . (5.44)

The Fano factor of the number of active Pol II in the mechanistic model is given by:

FFmec
A = Rmec − 1

γτ
A0 + A1

γτ
exp

(
−1

2τ
(
S −

√
(S − 2a)2 + 4a′ (a− b′ − c)

))
+ A2
γτ

exp
(
−1

2τ
(
S +

√
(S − 2a)2 + 4a′ (a− b′ − c)

))
,

(5.45)
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Figure 5.4: Pie charts showing the most and least sensitive of the telegraph model parameters θtele =
{ρ, σu, σb} with respect to mechanistic model parameters θmec = {a, a′, b, b′, c}, for the Oct4 gene in
(A-F) and for the Nanog gene in (G-L) [32]. We chose 103 parameter sets θmec at random, accepting
only parameter sets for which the predicted telegraph model parameters ρ, σu and σb from Eq. (5.38)
were within 2 experimental errors of values reported in [32]. From these randomly chosen parameter sets,
we then calculated the relative sensitivity sen(θtele

i , θmec
j ) which is given by Eq. (5.42). The proportions

on the pie charts show the proportion of parameter sets for which {i, j} were the most/least sensitive
parameters, where {i, j} states that i is the most/least sensitive parameter followed by j. (A) for Oct4,
the most sensitive parameters for ρ are b and c, with the majority of parameter sets being most sensitive
to b and second-most to c. (B) for Oct4, the least sensitive parameters for ρ are a and a′, with the
majority of parameter sets being least sensitive to a and second-least sensitive to a′. (C-F) follow similar
interpretations as made for (A) and (B) for the Oct4 gene, and (G-L) follow similar interpretations for
the Nanog gene.
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Figure 5.5: Fano factor of the active Pol II number distribution for the mechanistic model as a function of
the elongation time τ and the randomness parameter Rmec. The Fano factor is evaluated using Eq. (5.45).
Note that the large τ limit of the Fano factor is equal to the randomness parameter Rmec which is given
by Eq. (5.36); Rmec is here varied via the parameter a whilst keeping the rest of parameters constant:
b′ = 0.0125 s−1, a′ = 0.032 s−1, b = 0.16 s−1, c = 0.4 s−1. (A) shows that if Rmec ≤ 1 then the Fano
factor is less than 1 for all τ . (B) shows that if Rmec ≥ 1 then the Fano factor is less than 1 for a small
enough value of τ .
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where A0, A1 and A2 can be positive or negative and are complicated functions of

a, a′, b, b′, c, and where we have defined

S = a+ a′ + b+ b′ + c,

γ = abc

a′ (b′ + c) + a (b′ + b+ c) . (5.46)

Note that the arguments of the exponential functions are negative for all positive values

of the parameters. The Fano factor of the mature mRNA statistics is derived in Appendix

C.4 and is given by:

FFmec
M = 1 + bc

(
a′ (b′ + c

)
− a

(
a′ + d

)
− a2

)
/χ, (5.47)

with,

χ =
(
a′ (b′ + c

)
+ a

(
b′ + b+ c

)) (
a′ (b′ + c+ d

)
+ a

(
b′ + b+ c+ d

)
+ d

(
b′ + b+ c+ d

))
.

(5.48)

Since FFdtele
A ≥ 1 and FFtele

M ≥ 1, clearly model reduction using molecule number

moments will only be possible if the parameters of the mechanistic model are such that

FFmec
A ≥ 1 and FFmec

M ≥ 1. For the mature mRNA, this analysis is straightforward.

Similar to the derivation of the condition (5.37), from the numerator of the second term

in Eq. (5.47), it can be deduced that FFmec
M ≥ 1 provided the following condition holds:

b′ + c ≥ a

a′ (a+ a′ + d). (5.49)

When condition (5.49) is satisfied, one can find a mapping between the standard telegraph

model describing mature mRNA and the mechanistic model. We note that this condition

is not the same as that derived from model reduction using waiting time statistics,

namely Eq. (5.37). In fact, if Eq. (5.37) is not satisfied then neither is Eq. (5.49) i.e.,

for all points in parameter space in which it is not possible to match the moments of

waiting time distributions of the two-state and mechanistic models, it is also not possible

to match the moments of the mature mRNA numbers. However, it also follows that

there is a region of parameter space of the mechanistic model where moment matching

of the two-state model using waiting time statistics is possible (Eq. (5.37) is satisfied)

whereas moment matching using number statistics is not (Eq. (5.49) is not satisfied).

This region of parameter space where the two methods give different results is very small

whenever a + a′ ≫ d where the rates of transcriptional factor binding/unbinding to

the promoter are much larger than the rate of mature mRNA degradation. This seems
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Figure 5.6: Accuracy of the number distributions of active Pol II constructed using the delay telegraph
model for parameters close to the boundary Rmec = 1. (A-C) The minimum Fano factor of active Pol II
numbers in the mechanistic model as a function of the parameters θmec = {a, a′, b, b′, c}. For a given set
of θmec, the minimum Fano factor is found by varying the elongation time τ in Eq. (5.45). The region
above the white line Rmec = 1 is where model reduction using waiting time statistics is possible. Note
that inside this region, the minimum Fano factor of active Pol II numbers is smaller than 1 meaning that
for small enough values of τ , model reduction using number statistics is not possible. However, in (D-F)
we show that even when this is the case, the number distributions constructed using the delay telegraph
model with effective parameters given by Eq. (5.38) provide a reasonably good approximation to the
mechanistic model distribution of active Pol II. Note that these distributions represent a worst case
scenario—inside the boundary, for the vast majority of points, the two-state model distributions provide
an almost perfect fit to the mechanistic model distributions as shown in Fig. 2. The parameters are
as follows: (D) a = 0.0336 s−1, a′ = 0.006 s−1, b = 0.16 s−1, b′ = 0.016 s−1, c = 0.24 s−1, τ = 13.65 s,
FFmec

A = 0.74, Rmec = 1.034. (E) a = 0.072 s−1, a′ = 0.0288 s−1, b = 0.16 s−1, b′ = 0.016 s−1, c = 0.24
s−1, τ = 8.76 s, FFmec

A = 0.81, Rmec = 1.004. (F) a = 0.08 s−1, a′ = 0.005 s−1, b = 2 s−1, b′ = 0.0001
s−1, c = 1.36 s−1, τ = 3 s, FFmec

A = 0.62, Rmec = 1.0001.

to be generally the case since degradation timescales of mature mRNA are generally

many hours in eukaryotic cells [44]. Incidentally, this offers an explanation why the Fano

factor of mature mRNA is invariably measured to be greater than 1 in the literature of

eukaryotic gene expression [244, 45, 46].

Due to the complicated nature of the expression in Eq. (5.45), the derivation of an

analytic condition for which the Fano factor of active Pol II is greater than 1 appears to

be difficult to obtain. However, in the limit of τ → ∞ it is clear that FFmec
A → Rmec.

Hence, in the limit of long elongation times, the condition necessary for model reduction

using active Pol II moment number statistics i.e., FFmec
A ≥ 1, is equivalent to the

condition necessary for model reduction using waiting time statistics given by Eq. (5.37)

(which is the same as Rmec ≥ 1). This is intuitive since the waiting time calculation



5.7. Model reduction using number statistics or three-state models 128

does not consider the removal of active Pol II via elongation but only their production

time statistics. It can also be proved from Eq. (5.45) that in the limit τ → 0 we have

FFmec
A → 1. What happens for finite τ > 0 is difficult to deduce from Eq. (5.45) and

hence we investigate this numerically.

In Fig. 5.5 we evaluate Eq. (5.45) as a function of τ for a number of parameter sets with

different Rmec. Several notable features can be seen: (i) if Rmec < 1 then FFmec
A < 1

i.e., if model reduction using waiting time statistics is not possible then it is also

impossible using number statistics; (ii) for Rmec ≥ 1, as we increase τ , FFmec
A decreases

from 1 to a value below 1, reaches a minimum and then increases up to the value

Rmec. Consequently, if the condition for model reduction using waiting time statistics is

satisfied, it is not necessarily true that it is possible to achieve model reduction according

to number statistics. In Fig. 5.6 (A-C), we show a heat map of the minimum Fano factor

(achieved at intermediate τ) in the parameter space of the mechanistic model. Note that

the minimum achieved inside the region where Rmec > 1 (the region above the white

line) is not far below 1. As a consequence, while here there is no model reduction from a

number statistics point of view, model reduction using waiting time statistics is possible,

and the distribution computed using the effective parameters given by Eqs. (5.38) while

not perfect, it is acceptable—see Fig. 5.6 (D-F).

Thus far, we have looked at model reduction via number statistics from the perspective

of when the Fano factor numbers of the mechanistic and two-state models are both

greater than one. In Appendix C.5 we extend this analysis further by considering two

other types of model reduction via number statistics: (1) matching of the molecule

number moments and (2) of the number distributions of the mechanistic and the two-

state models for active Pol II and mature mRNA numbers. In particular, we found the

following: (i) within the region of parameter space of the mechanistic model described by

the condition Eq. (5.37), it was possible to numerically find parameters of the two-state

models such that the first three moments of the active Pol II and mature mRNA

number distributions of the two-state models agreed with those of the mechanistic

model—see Fig. 5.7 (A-C) and (G-I); (ii) the Hellinger distance between the molecule

number distributions predicted by the mechanistic model and the molecule number

distributions of the two-state models that provides the best approximate distribution

of the mechanistic model, is very small within the region defined by Eq. (5.37)—see

Fig. 5.7 (D-F) and (J-L). The analysis shows there is a close relationship between

model reduction using waiting time and number statistics, and supports the conclusions

reached in Sections 5.5 and 5.6 using waiting time statistics.
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Figure 5.7: Comparison of model reduction of the mechanistic model to two-state models using two
different types of number statistics and comparison with reduction from waiting time statistics. In
(A-C) black dots show the points in parameter space where the first 3 moments of the active Pol II
number distributions of the mechanistic and the delayed telegraph model match numerically using the
Newton-Raphson method; in (G-I) we show the same for the distributions of mature mRNA of the
mechanistic and telegraph models. The heat map shows the the value of ∆ = b′ + c − a − (a2/a′) and
the solid black lines divides areas where ∆ > 0 (waiting time moment matching exists) and ∆ < 0
(waiting time moment matching does not exist). Note that the black dots in A-C do not fill the whole
region ∆ > 0 because of numerical issues with the solver (See Appendix C.5 for a discussion). In (D-F)
and (J-L) we show the Hellinger distance (h in log scale) between the molecule number distributions
predicted by the mechanistic model and the molecule number distributions of the two-state models that
provides the best approximate distribution of the mechanistic model; the parameters of the two-state
models are those learnt after O(105) iterations of an algorithm that maximises the likelihood. The
mature mRNA decay rate d = 0.0016 s −1 in all cases and the delay time is τ = 273.62 s. See Appendix
C.5 for details of the numerical procedures used.
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5.7.2 Obtaining reduced models with three states using waiting time statistics

Thus far, we have considered the approximation of the mechanistic model by two-state

models (telegraph and delay telegraph models). However, some papers have postulated

the existence of two off states for some mammalian genes because the time spent by the

gene in the off state is measured to be non-exponential [47]. This has led to a variation

of the telegraph model, which we will refer to as the refractory model

G
σu−→ G⋆ σ∗

u−→ G⋆⋆ σb−→ G, G
ρ−→ G+M, M

d−→ ∅. (5.50)

One can also postulate a modification (parallel to the delay telegraph model) that

describes active Pol II rather than mature mRNA:

G
σu−→ G⋆ σ∗

u−→ G⋆⋆ σb−→ G, G
ρ−→ G+A, A =⇒

τ
∅. (5.51)

An analysis akin to the one shown for the two-state models in Appendix C.1 shows that

the Laplace transform of the waiting time distribution of the time between consecutive

active Pol II or mature mRNA production events is given by:

f̃(s) = ρ (σb + s) (σ∗
u + s)

(ρ+ s) (σb + s)σ∗
u + sσuσ∗

u + s (σb + s) (ρ+ s+ σu) , (5.52)

where f̃(s) =
∫∞

0 f(t)e−stdt. From the definition of the Laplace transform, we have that

the moments are given by

⟨ti⟩ = (−1)i∂i
sf̃(0). (5.53)

The randomness parameter is then given by the square of the coefficient of variation

squared of the time between two consecutive production events:

R = ⟨t
2⟩ − ⟨t⟩2

⟨t⟩2
= 1 + 2ρσu

(
σbσ

∗
u + (σ∗

u) 2 + σ2
b

)
((σb + σu)σu

∗ + σbσu) 2 . (5.54)

Hence the randomness parameter of the reduced models (5.50) and (5.51) is always

greater than 1. In contrast, we have already shown by Eq. (5.36) that for the mechanistic

model the randomness parameter can be greater than or less than 1. Hence it follows

that the condition given by Eq. (5.37) is necessary for both telegraph models and those

with a refractory state to approximate the mechanistic model. Similar to what we have

previously done for the two-state models, analytical expressions expressing the four

parameters of the reduced refractory models in terms of the six parameters of the

mechanistic model can be derived by matching the first four moments of the waiting

time distribution of the two models. The steady-state distribution solutions of active

Pol II and mature mRNA numbers of the reduced refractory models evaluated with
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these effective parameters provide an excellent approximation to the distributions of

the mechanistic model. However, since this was already achieved using two-state models

and since the refractory models have the same limitations as the two-state models

(randomness parameter cannot be less than 1), it follows that two-state models provide

the optimal choice for model reduction within the parameter space defined by Eq. (5.37).

5.8 Discussion

In this chapter we have investigated to what extent can two-state models predict the

active Pol II and mature mRNA dynamics of a more realistic mechanistic model that

incorporates transcriptional factor binding and unbinding, Pol II dynamics (binding,

pausing, release, elongation) and mature mRNA dynamics. We found that there is a

region of parameter space where there exists a choice of parameters of two-state models

in terms of the mechanistic model such that the first three moments of their waiting

time distributions exactly match. The distributions of active Pol II and mature mRNA

numbers predicted by two-state models with these effective parameters provide a very

close match to the distributions predicted by the mechanistic model; nevertheless, the

models can be distinguished by comparison of the shape of their waiting time distribution.

The waiting time distribution for the two-state model has a non-zero value at t = 0
and decreases monotonically with time; whereas for the mechanistic model, the waiting

time distribution is zero at t = 0 and has a peak at a non-zero value of time. We note

that while in principle these two distributions are always distinguishable, in practice the

differences will be small if the rate of Pol II binding and entry into the paused state is very

large. We also showed that the necessary condition for the reduction of the mechanistic

model to two-state models that was analytically derived using waiting time statistics

i.e., Eq. (5.37), is compatible with the region of parameter space identified by model

reduction using matching of moments and distributions of molecule numbers. We note

that while our model description was framed in terms of an activator, it has alternative

interpretations which increase its generality and applicability. One such alternative

interpretation is in terms of a repressor that operates via competitive binding [245, 246].

In this interpretation U is a state that has a repressor bound to the promoter such that

Pol II is blocked from being able to bind to the promoter. U⋆ then represents the state

where the promoter is free and neither repressor nor Pol II is bound to the promoter,

meaning that the binding site is accessible to both repressors and Pol II. Finally, the

U⋆⋆ state represents the state in which Pol II is recruited and proximally-paused.

A main distinction of this work from the analysis of a similar model studied in [170]

is that the present mechanistic model has an explicit description of active Pol II that

allows us to study the accuracy of the delay telegraph model. It is also noteworthy that

while [170] showed that the telegraph model provided an excellent approximation to
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the mature mRNA distribution of a similar mechanistic model under the assumption

of rapid entry and exit from the paused state, in this study we showed using a variety

of model reduction techniques that this assumption though sufficient is not necessary.

We also note that while other papers have made use of waiting time statistics in the

context of gene expression [47], our approach is distinctly different. The distribution of

the off time in another three-state model of gene expression [47] is not the same as the

distribution of the time between two consecutive active Pol II production events; this is

because the former provides only information about the time between two successive

bursts of gene expression which occurs on long timescales and reflects the accessibility

of the promoter but has no information on the fast Pol II processes within each burst.

To the best of our knowledge, the experimental measurement of the distribution of the

waiting time as defined in this chapter has not been attempted yet. This is because with

current labelling and imaging technology, it is not easy to directly visualise, track and

quantify individual transcriptional initiation events. However, a set of recent papers

report progress in this direction by estimating an approximate distribution between two

consecutive initiation events in Drosophila using a machine-learning approach [247, 248].

We finish by a discussion of the validity and interpretation of Eqs. (5.38) which express

the parameters of two-state models as a function of the parameters of the mechanistic

model. We have shown from these expressions that different parameters of the two-state

models can be effectively correlated due to their dependence on a common parameter/s

of the mechanistic model. This may explain correlations found between parameters of

two-state models estimated from single cell RNA sequencing for mammalian cells [46].

There is a region of parameter space where the effective parameters given by our theory

become negative (when the inequality given by Eq. (5.37) is not satisfied), meaning that

in this case there is no two-state model that can match the first three moments of the

waiting time distribution of the mechanistic model; we also showed that if the elongation

time and the mature mRNA degradation timescale are large enough, the aforementioned

region is also characterised by Fano factors of active Pol II numbers and mature mRNA

numbers that are less than one i.e., sub-Poissonian statistics. To see whether such a

case is realistic we extensively searched through the experimental literature of gene

expression, and found that for mature mRNA all papers report a Fano factor of greater

than 1 which is consistent with constitutive or bursty expression; for nascent RNA, the

majority of papers report Fano factors greater than 1 (see for example [45, 249, 217])

with the exception of one paper (see Supplementary Fig. 6 of [250]). However, it is to be

borne in mind that while theoretically nascent RNA numbers should equal the active

Pol II numbers in our model, in practice due to the intricacies of smFISH this is not the

case, as we now explain. The number of nascent mRNA is most commonly calculated

by dividing the total fluorescent signal from a transcription site by the fluorescence

emitted by a mature transcript. In this technique, a fluorescent signal is emitted by
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oligonucleotide probes bound to the nascent RNA tail. Since as an active Pol II travels

along the gene, its nascent RNA tail grows, we expect the fluorescent signal intensity

to increase as well [120]. Hence it follows that the total nascent mRNA nN calculated

using this method is generally a lower bound on the actual number of active Pol II nA

at a transcription site in the nucleus i.e., nN ∼ fnA where f is a fraction. From this

it immediately follows that the Fano factor of nascent mRNA is always less than the

Fano factor of active Pol II. Thus the measurement of Fano factors of nascent mRNA

numbers slightly less than 1 in [250] likely implies Fano factors of active Pol II which

are above 1. Hence we come to the conclusion that all available evidence to date for

both nascent and mature mRNA seems consistent with Eq. (5.37), which implies that

Eq. (5.38) provides a generally useful means to understand the parameters of two-state

models in terms of underlying microscopic processes.



Chapter 6

Stochastic time-dependent enzyme

kinetics: closed-form solution and

transient bimodality

This chapter has been published as [4] entitled Stochastic time-dependent enzyme kinetics:

closed-form solution and transient bimodality in the Journal of Chemical Physics. Slight

modifications have been made for its inclusion in this thesis.

6.1 Abstract

We derive an approximate closed-form solution to the chemical master equation de-

scribing the Michaelis-Menten reaction mechanism of enzyme action. In particular,

assuming that the probability of a complex dissociating into enzyme and substrate

is significantly larger than the probability of a product formation event, we obtain

expressions for the time-dependent marginal probability distributions of the number

of substrate and enzyme molecules. For delta function initial conditions, we show that

the substrate distribution is either unimodal at all times or else becomes bimodal at

intermediate times. This transient bimodality, which has no deterministic counterpart,

manifests when the initial number of substrate molecules is much larger than the total

number of enzyme molecules and if the frequency of enzyme-substrate binding events is

large enough. Furthermore, we show that our closed-form solution is different from the

solution of the chemical master equation reduced by means of the widely used discrete

stochastic Michaelis-Menten approximation, where the propensity for substrate decay

has a hyperbolic dependence on the number of substrate molecules. The differences

arise because the latter does not take into account enzyme number fluctuations while

our approach includes them. We confirm by means of stochastic simulation of all the

elementary reaction steps in the Michaelis-Menten mechanism that our closed-form

solution is accurate over a larger region of parameter space than that obtained using

the discrete stochastic Michaelis-Menten approximation.

134
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6.2 Introduction

The mechanistic basis of the simplest single-enzyme, single-substrate reaction consists

of a reversible step between an enzyme and a substrate, yielding the enzyme–substrate

complex, which subsequently forms the product. This reaction is commonly called the

Michaelis-Menten (MM) reaction [251, 51].

For over a century, the dynamics of this reaction have been extensively studied using

deterministic rate equations. Because these equations do not admit an exact closed-form

solution, various approximations have been devised to obtain insight into the underlying

dynamics. Use of the quasi-equilibrium or quasi steady-state approximations lead to

the famous Michaelis-Menten equation, an ordinary differential equation relating the

rate of product formation and the substrate concentration (see [53] for a discussion

of these approximations and their range of validity). This equation provides a simple

means to extract the relevant kinetic parameters (the Michaelis-Menten constant and

the maximum velocity) from experimental data. The Michaelis-Menten equation has

also been solved exactly leading to explicit expressions for the time-evolution of the

substrate (and product) concentration [52].

The stochastic formulation of enzyme kinetics, while not as much studied as its

deterministic counterpart, has received increasing attention since the 1960s when the

chemical master equation (CME) for the MM reaction mechanism was first derived

and studied by Anthony F. Bartholomay [252]. The CME is a probabilistic discrete

description of chemical reaction kinetics that is valid in well-mixed environments for

point reacting particles [68, 74]. Its relevance lies in its ability to describe kinetics when

the molecule numbers are low, conditions typical in intracellular environments, e.g.,

the median copy number per cell of most enzymes in E. coli is below a thousand [253].

Research efforts concerning the MM mechanism in the area of stochastic chemical kinetics

can be, broadly speaking, categorised into three types: (i) The search for a solution of

the CME for the MM reaction and its various extensions, i.e., obtaining a closed-form

solution for the time-dependent or steady-state probability distribution of the molecule

numbers of each species in the reaction system [58, 57, 56]. (ii) The reduction of the CME

and the construction of the stochastic equivalent of deterministic approximations (such

as the fast equilibrium, quasi steady-state and total quasi steady-state approximations)

and understanding their regime of validity [143, 86, 254, 144, 154, 255, 84, 110, 156,

256, 145, 81, 257, 258]. (iii) The derivation of exact or approximate expressions for the

mean of the stochastic rate of product formation and an investigation of the differences

or similarities from the predictions of the deterministic Michaelis-Menten equation

[259, 260, 261, 262, 263, 264, 265].
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The majority of the literature has focused on (ii) and (iii). There are very few studies

that focus on (i) principally because the CME is notoriously difficult to solve analytically

[81]. In this chapter, we are interested in deriving new solutions of the CME for enzyme

kinetic systems and hence next we briefly review the known solutions (see also [266]

for a lengthier discussion). Arányi and Tóth [58] were the first to exactly solve the

CME introduced by Bartholomay for the special case in which there is only one enzyme

molecule with several substrate molecules in a closed compartment; in particular, they

obtained an exact expression for the joint distribution of the number of substrate and

enzyme molecules as a function of time (since the original paper is rather difficult to

find, in Appendix D.1 we have reproduced the derivation in a concise manner). Another

exact solution is reported in [57] by Schnoerr et al. who derive the exact steady-state

solution for the CME describing the MM reaction system with one enzyme molecule

and augmented with a substrate production reaction step (to model for example the

production of substrate via translation). To our knowledge, there are no known exact

solutions for the time-dependent probability distribution of the CME of the MM reaction

system with multiple enzyme molecules. However, an approximate closed-form solution

was derived by Dóka and Lente [56], using a so-called stochastic equivalent of the quasi

steady-state approximation. Namely, they make an ansatz that the joint distribution

of the number of substrate and enzyme molecules takes the form of a product of a

time-dependent function and a constant value which characterises the state occupied by

the system. Using this assumption and a number of heuristic arguments, the authors

reduce the problem to a one-variable master equation which they then solve iteratively.

However, one could argue that the derivation outlined in [56] lacks a certain degree of

rigour and the analysis of the accuracy of the solution over time and parameter space is

rather limited, which raises questions about the validity of the approximation.

In this chapter, our aims are to: (a) Derive an expression for the approximate time-

dependent solution of the CME of the MM reaction system with multiple enzyme

molecules under quasi-equilibrium conditions using an approach that is more rigorous

and systematic than in previously published works. (b) Compare and contrast this

solution with the solution of an often used reduced CME for the MM reaction in the

literature. (c) Use the closed-form solution to identify interesting dynamical phenomena.

We verify our approximate analytic results against the benchmark stochastic simulation

algorithm (SSA) [68]. This chapter is divided as follows. In Section 6.3, we briefly review

the main results known for deterministic enzyme kinetics, focusing in particular on the

quasi-equilibrium approximation. In Sections 6.4.1 and 6.4.2, we introduce our method

by first applying it to the MM reaction with a single enzyme molecule and subsequently

to the case of multiple enzyme molecules. The method consists of three steps: (1)

using a time scale separation method called averaging [113] to define groups of rapidly

equilibrating states which then allows the derivation of a master equation describing
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the Markovian dynamics of these groups on the slower time scale; (2) solving the

resultant time-dependent, single variable master equation for the group dynamics using

the method developed in [127] which has the advantage of bypassing the calculation of

the eigenvectors of the transition matrix and hence considerably simplifies the analytical

computations; (3) using the time-dependent solution describing the group dynamics to

construct the marginal time-dependent distributions for both the numbers of substrate

and enzyme molecules. We use the closed-form solution to find the regions of parameter

space where transient bimodality of the distribution of substrate molecules occur. In

Section 6.5, we show that our solution is accurate over a wider region of parameter

space than the solution of a commonly used reduced master equation with a propensity

that has the same hyperbolic dependence on the number of substrate molecules as the

deterministic Michaelis-Menten equation (an approach popularised by Rao and Arkin

[86]). In Section 6.6, we show that the same three-step method used in Sections 6.4.1

and 6.4.2, can be used to derive time-dependent distributions for multi-substrate enzyme

reactions. We finish by discussing our results in Section 6.7.

6.3 Deterministic enzyme kinetics

Before progressing to stochastic enzyme kinetics we first briefly outline some of the

main results known for deterministic enzyme kinetics. We consider the chemical reaction

system:

S + E
k0−⇀↽−
k1
C

k2−→ E + P, (6.1)

where S denotes the substrate species, E denotes the enzyme species, C denotes the

enzyme-substrate complex and P denotes the product. This system can be thought of

as a reduction of the more biologically realistic set of reactions:

S + E −⇀↽− ES −→ EP −→ E + P, (6.2)

where the unbinding of the product from the enzyme is very fast. For simplicity, we

assume the initial condition for this system is that all enzymes are unbound to the

substrate. There are two conservation laws for this system: [E] + [C] = [E]0 and

[S] + [C] + [P ] = [S]0, where [i] denotes the concentration of species i and [i]0 the initial

concentration of species i. Assuming well-mixed conditions and the law of mass action,

the deterministic dynamics of the reaction system in Eq. (6.1) are described by a set of

coupled ordinary differential equations (commonly called the rate equations) describing
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the time-evolution of the substrate and complex concentrations:

d[S(t)]
dt

=− k0[S(t)]([E]0 − [C(t)]) + k1[C(t)],

d[C(t)]
dt

=− (k1 + k2)[C(t)] + k0[S(t)]([E]0 − [C(t)]).
(6.3)

Note that the time-dependent concentrations of E and P can be straightforwardly

obtained from the time-dependent solutions of C and S by means of the conservation

laws previously stated. Although seemingly simple, the rate equations given by Eq.

(6.3) are not easy to solve analytically for the time-dependent analytic solution, and

as such one is limited to finding approximate solutions. Two of the most common

approximations used in the literature are the (i) quasi steady-state assumption (QSSA)

and (ii) the quasi-equilibrium approximation (QEA), also called the rapid equilibrium

approximation or the reverse quasi steady-state assumption. The QSSA, derived by

Briggs and Haldane [267], assumes that after a short transient, the concentration of

the complex (and enzyme) is in a quasi steady-state (with regard to the substrate

and product); thus under the QSSA, it is assumed that d[C(t)]/dt ≈ 0. See [268] for a

detailed discussion of this approximation and for its range of validity. On the other hand,

the QEA assumes that substrate binding and dissociation occur much more rapidly than

product formation such that the substrate, enzyme and complex are approximately in

equilibrium. Thus under the QEA, it is assumed that d[S(t)]/dt ≈ 0; this approximation,

popularised by Michaelis and Menten [251], is commonly used in the analysis of various

biochemical models [269].

Enforcing either the QSSA or QEA leads to the following effective rate equation

describing the time-evolution of the substrate concentration:

d[S(t)]
dt

= −Vmax[S(t)]
k + [S(t)] , (6.4)

where Vmax = k2[E]0, k = (k1 + k2)/k0 if the QSSA is used, k = k1/k0 if the QEA is

used, and where the conservation law [S] + [P ] = [S]0 holds. Note that a necessary

limitation of Eq. (6.4) is that we have assumed that [S] + [C] ≈ [S], which is true in the

limit [S]0/[E]0 ≫ 1. Eq. (6.4) has been solved perturbatively in a number of studies,

all of which also assessed the validity of the QSSA [270, 268]. An exact solution was

reported in [52] which is given by:

⟨n(t)⟩a = Ω[S(t)] = Ωk W
( [S]0

k
exp

(−Vmaxt+ [S]0
k

))
, (6.5)
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where ⟨n(t)⟩a gives the (deterministic) number of bound and unbound substrate

molecules obtained in the limit [S]0/[E]0 ≫ 1 at time t, Ω is the volume of the system,

and W (·) is the principal branch of the Lambert W function (also known as the Omega

function). Note that within van Kampen’s system size expansion [8] for monostable

systems, the rate equations are obtained as the macroscopic limit of the stochastic

description of a well mixed chemical system; within this formalism, the concentration

of a species i multiplied by the volume is the same as the mean number of molecules

of species i. Hence in our case ⟨n(t)⟩a can also be interpreted as the mean number of

substrate molecules in the macroscopic limit. In the rest of this chapter, we study the

stochastic equivalent of the QEA and thus we shall use k = k1/k0.

6.4 Stochastic QEA analysis

6.4.1 Single enzyme

For simplicity, we first illustrate the method by solving the enzyme system described in

Eq. (6.1) for the case of one enzyme molecule with initially N substrate molecules. Since

there are no birth-death processes coupled to any species, the conservation equations

nE + nC = 1 and n + nC + nP = N hold, where n denotes the number of substrate

molecules and all other ni denote the number of species i.

We label the microstate of the reaction network in Eq. (6.1) as (n, nE), which fully

specifies the state of the system due to the conservation laws stated previously. The

possible transitions between all of the discrete microstates of this system are illustrated

in Fig. 6.1(i): the system starts from the state (N, 1) and eventually ends up in the

state (0, 1). Our goal now will be to find the marginal probability distribution P (n; t),
i.e., the probability of observing n substrate molecules at a time t.

Assuming Markovian dynamics [81], it follows that the time-evolution of P (n, nE ; t)
(the probability of observing n substrate molecules and nE enzyme molecules at a time

t) is given by the CME:

∂P (n, nE ; t)
∂t

= k0(n+ 1)(nE + 1)P (n+ 1, nE + 1; t) (6.6)

+ (2− nE) (k1P (n− 1, nE − 1; t) + k2P (n, nE − 1; t))

− (k0 nnE + (1− nE)(k1 + k2))P (n, nE ; t).

Note that this CME is valid only for a single enzyme system, i.e., nE ∈ {0, 1}.
Furthermore note that the bimolecular propensity is inversely proportional to the

volume Ω but for simplicity we set Ω = 1 (a convention throughout the manuscript).

The standard approach involves introducing the time-dependent marginal generating
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functions GnE (z; t) = ∑
n z

nP (n, nE ; t) and attempting to solve the generating function

partial differential equations, e.g., using eigenfunction methods (see Section 2.6.1 and

[8, 74]). However, this standard method quickly leads one to mathematical difficulty. An

analytic solution only presents itself in a non-cumbersome form where one assumes the

initial state contains a single substrate molecule [58]. In Appendix D.1 we summarise the

single enzyme solution provided by [58], and its complexity even in the single substrate

molecule case motivates the analysis we present below.

We take a different approach. We first simplify the problem through the use of averaging

[113, 115, 271]. Specifically the procedure lumps together microstates equilibrating on a

fast timescale in groups which then allows one to write a master equation describing the

dynamics of the groups on the slow timescale. We shall assume that the slow timescale

is that associated with product formation, i.e., k2 is sufficiently small (we will be more

precise what this really means later) and hence the averaging procedure is in the same

spirit as the QEA discussed in Section 6.3. Note that this time scale separation is

justified in the literature, see [272].

Figure 6.1: Illustration of the enzymatic system described by a single enzyme and N initial substrate
molecules. (i) Markovian dynamics of the enzyme kinetic system described by a single enzyme. The
initial condition for the system is (N, 1), and as t → ∞ the microstate of the system is guaranteed to
be that of the absorbing state (0, 1), with no remaining substrate and one free enzyme. (ii) Markovian
dynamics in the reduced model, where processes occurring in a group are assumed to be much faster than
the interactions between the groups themselves. The label ‘group m’ denotes the set of microstates that
exist when m product molecules have been formed, given that there are no product molecules initially;
hence, it is easily seen that there are N + 1 groups in total with labels m = {0, 1, 2, ..., N − 1, N}.

Since k2 is small, it follows that we can group all microstates that are in rapid equilibrium

with each other (due to the fast processes of binding and unbinding of substrate from

the enzyme) as shown in Fig. 6.1(ii); group m is then the set of microstates of the

system accessible when m product molecules have been produced. We define pg
m(t) as

the probability to be in group m at a time t, and pqe
i,m as the probability of having i free

enzymes for the reduced system given by considering only reactions among microstates
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in group m. Once these probabilities are found, we can construct P (n; t), based on the

fact that there are two microstates that contain n substrate molecules: (n, 0) and (n, 1)
associated with groups N − (n+ 1) and N − n respectively. This means that under the

stochastic QEA:

P (n; t) = pg
N−n(t)pqe

1,N−n + pg
N−(n+1)(t)p

qe
0,N−(n+1). (6.7)

In the case of the single enzyme system studied in this section, the quasi-equilibrium

probabilities are trivial (since there are only two microstates in each group) and are

given by:

pqe
1,N−n = k1

k1 + k0n
and pqe

0,N−(n+1) = k0(n+ 1)
k1 + k0(n+ 1) . (6.8)

All that remains is the task of finding pg
m(t). To do this we first write the master equation

for the transitions between groups. Rescaling time as t′ = k2t and making use of the

previous definition, k = k1/k0, the master equation for the groups is:

∂t′pg
m(t′) = amp

g
m−1(t′)− am+1p

g
m(t′), (6.9)

where:

am = N − (m− 1)
k +N − (m− 1) , 1 ≤ m ≤ N + 1, (6.10)

and ai≤0 = 0. Note that am is the probability of the jump from group m− 1 to group

m in a unit interval of rescaled time. From Fig. 6.1 the probability of the jump from

group m− 1 to group m in a unit interval of normal time is equal to k2 multiplied by

the probability of being in the microstate (N −m, 0) which under the rapid equilibrium

assumption is k0(N −m+ 1)/(k1 + k0(N − (m− 1))). Due to time rescaling, the factor

of k2 disappears and hence follows Eq. ((6.10)).

Since there are N + 1 groups in total, Eq. (6.9) corresponds to a system of N + 1 ODEs

which can be concisely written as the matrix equation:

∂t′pg(t′) = Q · pg(t′), (6.11)
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where pg(t′) is a N+1 element column vector defined by pg(t′) = (pg
0(t′), pg

1(t′), ..., pg
N (t′))

and Q is a (N + 1)× (N + 1) lower-bidiagonal square matrix defined by:

Q =



−a1

a1 −a2

a2 −a3

. . .
. . .

aN −aN+1


. (6.12)

As we will describe below, we solve the set of ODEs given by Eq. (6.11) using the method

described in [127] which provides an exact time-dependent solution for any one-variable

one-step master equation with finite number of microstates as long as one can find the

eigenvalues of the transition rate matrix exactly. In our case, the eigenvalues of Q are

trivial, since Q is lower-bidiagonal, and they are given by the diagonal elements. Hence

the eigenvalues of Q are given by λi = −ai, 1 ≤ i ≤ N + 1. Note that λN+1 = 0 and is

the largest eigenvalue, with all λ1≤i≤N < 0.

We now proceed to use these eigenvalues to find the time-dependent solution to Eq.

(6.11). The solution to this set of ODEs is formally given by:

pg(t′) = exp
(
Qt′
)
· pg(0), (6.13)

where exp(Qt′) is defined as a matrix exponential. For a general master equation, this

matrix exponential is typically difficult to deal with, however in our case Q is lower-

bidiagonal and hence we can proceed via the method of [127]. We first consider Cauchy’s

integral formula for matrices, explicitly given by [130]:

f(Q) = 1
2πi

∮
C

(zI −Q)−1 · f(z)dz, (6.14)

where C is a closed contour in the complex plane that encloses all the eigenvalues of Q
and I is the identity matrix. Taking f(z) = ezt′

pg(0) we then arrive at:

pg(t′) = 1
2πi

∮
C

(zI −Q)−1 · pg(0)ezt′
dz. (6.15)
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A typical initial condition is pg
m(0) = δm,0, meaning that we always start in group 0

which contains the microstates (N, 1) and (N − 1, 0), as is shown in Fig. 6.1(i). Note

that δi,j is the Kronecker delta. Using this initial condition, Eq. (6.15) becomes:

pg
m(t′) = 1

2πi

∮
C

(zI −Q)−1
m+1,1e

zt′
dz. (6.16)

We show at the end of this section how to extend the time-dependent solution for a

general initial distribution. Since it is bidiagonal, the inverse of zI −Q can easily be

found via Cramer’s rule [273]:

(zI −Q)−1
ij =


0, i < j,

1
ai+z , i = j,

1
aj+z

∏i
k=j+1

ak−1
ak+z , i > j.

(6.17)

Substituting this into Eq. (6.16) then gives us:

pg
m(t′) =


0, m < 0,

1
2πi

∮
C

ezt′

z−λ1
dz, m = 0,

1
2πi {(−1)m∏m

k=1 λk} ×
{∮

C
ezt′∏m+1

k=1 (z−λk)
dz

}
, m > 0,

(6.18)

where we have utilised the relation λi = −ai. These integrals can then be evaluated

using Cauchy’s residue theorem [274], explicitly stated as:∮
C
f(z)dz = 2πi

∑
k

Res(f(z), zk), (6.19)

where the values z = zk are poles of f(z) within C and the residues are Res(f(z), zk) =
limz→zk

(z−zk)f(z) for the simple poles in Eq. (6.18). Note that the poles of the complex

integrals in Eq. (6.18) are the eigenvalues of Q. Therefore, from Eq. (6.18) we finally

get an expression for pg
m(t′) as:

pg
m(t′) =


0, m < 0,

eλ1t′
, m = 0,

{(−1)m∏m
k=1 λk} ×

{∑m+1
k=1

eλkt′∏m+1
j=1,j ̸=k

(λk−λj)

}
, m > 0.

(6.20)

Hence the time-dependent probability distribution P (n; t) is given by Eq. (6.7) together

with Eqs. (6.8) and (6.20). The extension to a more general initial distribution is then

relatively simple. Consider some initial distribution pg(0) = q, where q is an N + 1
element vector; the time-dependent group probability pg

m|q(t′) is then given by the
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weighted sum:

pg
m|q(t′) =

N∑
j=0

pm|qj
(t′)qj . (6.21)

This initial condition could be useful to model variation in the initial number of substrate

molecules due to uncertainty introduced by experimental error or else due to the intrinsic

noise in the reaction mechanism generating the substrate. Note that if qm = δm,0, one

clearly recovers the analysis shown above. For the rest of this chapter we only consider

the initial condition pg
m(0) = δm,0, specifically where all enzymes are initially unbound

to the substrate and where there are initially zero product molecules, but note that the

analysis that follows can be easily extended for more general initial distributions.

In the beginning of this derivation, we stated that the main assumption is that k2 is

sufficiently small. This statement can be made more precise as follows. From Fig. 6.1(ii)

it is clear that the exit from group m can only occur when the enzyme is bound to

substrate, i.e., from state (N −m− 1, 0). Now given that we are in this state, it follows

that only two reactions can occur: either a reaction which causes a group change, i.e.,

(N −m−1, 0)→ (N −m− 1, 1) which occurs with rate k2 or a reaction that leads to no

group change, i.e., (N −m− 1, 0)→ (N −m, 1) which occurs with rate k1. Hence the

probability of leaving the group is k2/(k1 + k2), from which follows that the microstates

in each group will achieve quasi-equilibrium if k2 ≪ k1. Therefore, this is the condition

under which our method provides a good approximation to the distribution of substrate

molecules at all times.

We test the distributions predicted by Eq. (6.7) against the SSA in Fig. 6.2A(i-iii) and

Fig. 6.2B(i-iii). In Fig. 6.2A(i-iii) we show that the solution is accurate for small N = 8,

over a time range from t′ = 1 near the initial condition, to t′ = 12 close to the absorbing

state, where the validity criterion k1 ≫ k2 holds. In Fig. 6.2B(i-iii) we observe that our

solution agrees similarly well to the SSA for larger values of N . For a more general

comparison of the exact solution to SSA through time, we can compute the mean and

standard deviation from Eq. (6.7):

⟨n(t′)⟩ =
N∑

n=0
nP (n; t′), (6.22)

σ(t′) =

√√√√( N∑
n=0

n2P (n; t′)
)
− ⟨n(t′)⟩2. (6.23)

The stochastic mean number of substrate ⟨n⟩ can then be compared to the deterministic

mean number ⟨n⟩d obtained from the rate equations. That is, we numerically solve Eq.

(6.3) for [S(t)] with k2 = 1, noting that ⟨n⟩d = [S(t)] as we have previously set Ω = 1.
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Figure 6.2: Comparison of the analytic time-dependent probability distribution of substrate molecules for
the enzyme reaction in (6.1) with one enzyme molecule, i.e., M = 1, and N initial substrate molecules
to the distribution obtained from the SSA [68]. Note that the analytic solution is given by Eq. (6.7)
together with Eqs. (6.8) and (6.20). In all cases we enforce k1/k2 ≫ 1 such that the quasi-equilibrium
assumption behind the QEA is justified. We show the time-evolution of the distribution for substrate
numbers, from near the initial condition to near the absorbing state, in two cases: A(i-iii) is for N = 8,
k0 = k1 = 103, k2 = 1, meaning that k = k1/k0 = 1. B(i-iii) is for N = 50, and all rate parameters as in
the previous case. Note that the analytical solution (green lines) matches the SSA (black dots) for all
times, for both a small and large initial number of substrate molecules. In A(iv) and B(iv) we show
the corresponding plots of the time-evolution of the mean ⟨n⟩ and of the standard deviation σ of the
distributions of substrate molecules, as predicted by our theory; these are compared with the mean
calculated from the SSA and the mean ⟨n⟩d obtained from the numerical solution of the deterministic
rate equations given by Eq. (6.3). Note that the deterministic mean is a better approximation to the
stochastic mean for larger N . As shown in B(iii), and mildly in A(ii), the distribution can be bimodal
at intermediate times. Each SSA probability distribution is constructed from 105 individual reaction
trajectories.
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In Figs. 6.2A(iv) and 6.2B(iv) we plot the evolution of the stochastic and deterministic

mean substrate numbers in time, and compare them to the SSA for parameters sets

N = 8, k = 1 and N = 50, k = 1 respectively. We also show the standard deviation about

the mean, i.e., ⟨n⟩±σ, where we have dropped the time-dependence for brevity, given in

the blue envelope. Clearly, ⟨n⟩ from Eq. (6.22) matches the mean predicted by the SSA for

most times, aside from the initial condition at t′ = 0, where a step-like drop is observed

in the mean predicted by the SSA to the value predicted by the quasi-equilibrium

analysis. This step-like drop to the quasi-equilibrium value of the mean is known as

the initial transient, and is seen in more detail in Appendix D.2. The explanation of

the initial transient follows by considering the system after quasi-equilibrium has been

reached between the two microstates in group 0, (N, 1) and (N − 1, 0), after a time

t′c ≈ 1/min{k0N, k1} which is small under the rapid equilibrium assumption. Because of

the discreteness of the substrate molecules, ⟨n⟩ after a time t′c ≪ 1 becomes an average

over n = N and n = N − 1 weighted by the quasi steady-state probabilities pqe
1,0 and

pqe
0,0 respectively, hence the step-like drop in the mean predicted by the SSA at t′ = t′c.

The method of averaging in the stochastic QEA assumes the immediate occurrence

of the equilibrium in group 0 at t′ = 0, hence the dispatch of ⟨n(t′ = 0)⟩ from the

exact initial condition. This also explains why the standard deviation predicted by the

stochastic QEA (notably in Fig. 6.2A(iv)) appears to be non-zero at t′ = 0: since the

system is modelled to be in quasi-equilibrium at initiation, equilibrium fluctuations are

present even at t′ = 0. However, so long as the SSA parameters are chosen such that

k1/k2 ≫ 1 the stochastic QEA provides a very good approximation even for small times

so long as t′ > t′c. Additionally, we compare ⟨n⟩ to the deterministic mean number of free

substrate, ⟨n⟩d, predicted the numerical solution of Eq. (6.3). Overall, the deterministic

solution is found to be in good agreement with the mean predicted by the SSA and the

stochastic QEA, however there does exist a small disagreement where the mean number

of substrate molecules is small (seen more explicitly in Fig. 6.2B(iv)). This disagreement

occurs since molecular discreteness is very important where ⟨n⟩ is very small, and

properly accounting for it leads to differing dynamics for ⟨n⟩ in this region, whereas

the behaviour of ⟨n⟩d does not change compared to ⟨n⟩d ⪆ 1, since the deterministic

analysis considers molecule number to be continuous. As we shall see later, increasing

the number of enzyme molecules removes this discrepancy between the stochastic and

deterministic means, highlighting that the discrepancy seen here is because we do not

consider enzyme molecules to be discrete in the deterministic analysis.

From Fig. 6.2B(iii) we observe that the distribution of substrate molecule numbers

can be bimodal at intermediate times (there are two peaks at n = 0 and n = 6 at

t′ = 45). This bimodality, though less conspicuous, can in fact be also observed in Fig.

6.2A(ii) with peaks at n = 0 and n = 2. From Fig. 6.2A(iv) and B(iv), we can see

that in both cases the bimodality occurs at a time t′ when ⟨n⟩ − σ ≈ 0, i.e., when the
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fluctuations are large enough to cause frequent transitions to the absorbing state. This

type of dynamical phase transition (which we shall refer to as transient bimodality),

from a unimodal distribution to a bimodal one and then back to a unimodal one, as

time progresses, has also been recently observed in genetic feedback loops [115] and

is known in non-biological systems [275, 276]. We will discuss this phenomenon more

extensively in later sections.

6.4.2 Multiple enzymes

We now extend the solution to the enzyme system (6.1) to the case where initially there

are N free substrate molecules and M free enzyme molecules with the constraint of

substrate abundance, i.e., N ≥M . Note that the solution to the system with M ≥ N
follows as a special case of the N ≥M system, discussed at the end of this section.

We proceed in solving this system as we did in the single enzyme case: assuming k2 is

sufficiently small, we group the microstates governed by the fast processes together to

form N + 1 groups between which the transitions are significantly slower than those

between the fast internal states of an individual group. The Markov chain describing the

system split into groups is shown in Fig. 6.3. Our task is then to find (i) the equilibrium

probabilities pqe
i,m of being in each fast internal state i (considering only the reactions

between the internal states in group m) and (ii) to find the time-dependent probability

pg
m(t) of being in group m. Knowledge of both (i) and (ii) will allow us to approximate

the distribution of interest, P (n; t).

We begin by finding the probabilities pqe
i,m and redefine it for the case of multiple enzyme:

pqe
i,m is the equilibrium probability of having M − i free enzymes in the case of a reduced

system involving only the reactions among the fast internal states contained in group

m. Now, finding pqe
i,m for any group 0 ≤ m < (N − 1) is more complicated than was

the case for a single enzyme system, since there we had only two fast internal states in

each group. To proceed we consider the following Markovian dynamics of a system with

L+ 1 possible microstates:

0
k0,1−−⇀↽−−
k1,0

1
k1,2−−⇀↽−−
k2,1

...
kL−1,L−−−−⇀↽−−−−
kL,L−1

L. (6.24)

One can then write the master equation for this dynamical system in matrix form:

∂tP t =M · P t, (6.25)
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Figure 6.3: Illustration showing the transitions between the discrete microstates of the enzyme system
(6.1) with initially M enzymes and N substrate molecules where N ≥ M . Microstates that are in
rapid equilibrium with each other are aggregated together, with each set of such fast internal states
corresponding to a group. Namely, the label ‘group m’ denotes the set of microstates that exist when there
are m product molecules, given that there are no product molecules initially. Groups 0 ≤ m ≤ N − M
have M + 1 fast internal states, whereas groups N − M < m ≤ N have N − m + 1 fast internal states.
Note that as t → ∞ we are guaranteed to be in the absorbing state (0, M).

where P t = (Pt(0), Pt(1), ..., Pt(L)), Pt(i) is the probability of being in microstate i at

time t and

M =



−k0,1 k1,0

k0,1 −(k1,0 + k1,2) k2,1

k1,2 −(k2,1 + k2,3) k3,2

. . .
. . .

. . .

kL−1,L −kL,L−1


. (6.26)

Enforcing the quasi-equilibrium condition, ∂t(·) = 0, converts the system of L+ 1 ODEs

in Eq. (6.25) into a system of L+1 simultaneous equations in the equilibrium microstate

probabilities P (i), given by M· P = 0. One can explicitly solve this set of simultaneous

equations under the constraint
∑

i P (i) = 1, yielding the probabilities:

P (i) =

(∏i
j=1 kj−1,j

)
×
(∏L

j=i+1 kj,j−1
)

∑L
i=0

[(∏i
j=1 kj−1,j

)
×
(∏L

j=i+1 kj,j−1
)] . (6.27)
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Note that due to the definition of the empty product being equal to 1, when we have

either i = 1 or i = L the numerator of Eq. (6.27) is equal to 1. Further note that one

could also utilise the King-Altman method [277, 278] to arrive at Eq. (6.27). Using this

result we can find the quasi-equilibrium probabilities for each group shown in Fig. 6.3.

First, we consider the groups 0 ≤ m ≤ N −M , each with M + 1 fast internal states as

these groups contain more (or the same number) free substrate molecules than enzymes.

Taking the specific example of group m = 0, we see that we have a total of M + 1
microstates, i.e., L = M , kj−1,j = k0(N − (j − 1))(M − (j − 1)) and kj,j−1 = jk1, with

1 ≤ j ≤M . Identifying pqe
i,0 with P (i) in Eq. (6.27), we find that:

pqe
i,0 =

ki
0k

M−i
1

{∏i
j=1(N − (j − 1))(M − (j − 1))

}
×
{∏M

j=i+1 j
}

∑M
i=0

[
ki

0k
M−i
1

{∏i
j=1(N − (j − 1))(M − (j − 1))

}
×
{∏M

j=i+1 j
}] . (6.28)

The result can be easily generalised for groups 0 ≤ m ≤ N −M and 0 ≤ i ≤M :

pqe
i,m =

k−i
{∏i

j=1((N −m)− (j − 1))(M − (j − 1))
}
×
{∏M

j=i+1 j
}

∑M
i=0

[
k−i

{∏i
j=1((N −m)− (j − 1))(M − (j − 1))

}
×
{∏M

j=i+1 j
}] , (6.29)

where we have re-introduced k = k1/k0. The dynamics of groups N −M < m ≤ N are

slightly different as they contain fewer substrate molecules than enzymes. These groups

correspondingly have N −m+ 1 fast internal states, i.e., 0 ≤ i ≤ N −m. This leads to

quasi-equilibrium probabilities of the form:

pqe
i,m =

k−i
{∏i

j=1((N −m)− (j − 1))(M − (j − 1))
}
×
{∏N−m

j=i+1 j
}

∑N−m
i=0

[
k−i

{∏i
j=1((N −m)− (j − 1))(M − (j − 1))

}
×
{∏N−m

j=i+1 j
}] , (6.30)

Finally, by defining

g(m) = Θ(m− (N −M))× (m− (N −M)) , (6.31)

where Θ(m − (N − M)) is the Heaviside step function, we can write down a joint

expression for all groups 0 ≤ m ≤ N and 0 ≤ i ≤M − g(m):

pqe
i,m = zi,m

Zm
, (6.32)



6.4. Stochastic QEA analysis 150

with

zi,m = k−i


i∏

j=1
((N −m)− (j − 1))(M − (j − 1))

×


M−g(m)∏
j=i+1

j

 , (6.33)

Zm =
M−g(m)∑

i=0
zi,m. (6.34)

We now proceed to calculate pg
m(t). From Fig. 6.3, we observe that the transitions

between the groups are described by the master equation identical in form to Eq. (6.9).

However, the transition rates am in this case are different, as the group m can be

reached from any of the M − g(m − 1) microstates in the group m − 1 (excluding

only the microstate with M free enzymes) and we must also take into account the

quasi-equilibrium probabilities of being in the corresponding microstate. It follows that

the transition rates can be defined as:

am =
M−g(m−1)∑

n=1
npqe

n,m−1 = −k∂k(ln(Zm−1)), 1 ≤ m ≤ N + 1, (6.35)

=

−M ×
(

k 1F1(1−M,−m−M+N+3;−k)
(−m−M+N+2) 1F1(−M,−m−M+N+2;−k) − 1

)
, m ≤ N −M + 1,

−(N −m+ 1)×
(

k 1F1(m−N,m+M−N+1;−k)
(m+M−N) 1F1(m−N−1,m+M−N ;−k) − 1

)
, m > N −M + 1,

where 1F1(a, b; c) is the confluent hypergeometric function, a result which we prove in

Appendix D.3. As the dynamics between the groups are identical to the single enzyme

case, pg
m(t′) has exactly the same form as Eq. (6.20) but with the eigenvalues of Q being

given by λi = −ai, where the ai are now defined in Eq. (6.35).

We can now obtain the probability distribution P (n; t), which requires us to find all

microstates in the system containing n free substrate molecules. From Fig. 6.3 we see

that for substrate numbers n, where 0 ≤ n ≤ N −M , there are M + 1 corresponding

microstates given by (n, 0), (n, 1), ..., (n,M) which respectively belong to groups (N −
M)− n, (N −M)− n+ 1, ..., N − n. Therefore, the distribution has the form:

P (n; t′) =
M∑

j=0
pqe

j,N−(n+j) p
g
N−(n+j)(t

′) , where 0 ≤ n ≤ N −M. (6.36)

In the case of N −M < n ≤ N , there are N − (n−1) microstates containing n substrate

molecules, explicitly defined as (n,M − (N − n)), (n,M − (N − n) + 1), ..., (n,M) and

associated with groups 0, 1, ..., N − n respectively. Hence we have:

P (n; t′) =
N−n∑
j=0

pqe
j,N−(n+j) p

g
N−(n+j)(t

′) , where N −M < n ≤ N. (6.37)
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Finally, using the function g(m) previously defined in Eq. (6.31), we obtain:

P (n; t′) =
M−g(n)∑

j=0
pqe

j,N−(n+j) p
g
N−(n+j)(t

′) , where 0 ≤ n ≤ N, (6.38)

which fully describes the time-dependent solution for the multiple enzyme system

N ≥ M with the initial condition pg
m(0) = δm,0. Note that the solution can also be

extended to a more general initial distribution in the same way as was done for the single

enzyme system in Section 6.4.1. The equations for mean number of substrate, ⟨n(t′)⟩,
and standard deviation, σ(t′), at rescaled time t′ are the same as in Eqs. (6.22)–(6.23),

but where P (n; t′) is now given by Eq. (6.38).

Figure 6.4: Illustration showing the transitions between the discrete microstates of the enzyme system
(6.1) with initially M enzymes and N substrate molecules where M ≥ N . As before, fast internal states
are aggregated together into groups. The dynamics of the groups 0 to N can be mapped onto the
dynamics of groups N − M to N in the system with N ≥ M (shown in Fig. 6.3). See text for discussion.

Now consider a multiple enzyme system which initially contains fewer free substrate

molecules than enzymes, i.e., M ≥ N . The Markov chain describing the transitions

between the microstates of this system, shown in Fig. 6.4, has similarities to that for

the system with N ≥ M . Specifically, if we replace N by M in groups 0 to N in the

M ≥ N case of Fig. 6.4 then we exactly recover groups N −M to N in the N ≥ M

case of Fig. 6.3. This mapping implies that the dynamics of the system with M ≥ N
are correctly described by Eq. (6.38) due to the utility of g(m). Therefore, Eq. (6.38) is

a valid solution for any positive integer values of N and M .

As for the single enzyme case, we can make the initial statement that k2 must be

sufficiently small for the derivation to hold, more precise. Suppose we are in the

microstate (n, ne). There are then 3 possible reactions which can occur: (i) (n, ne)→
(n, ne + 1) with rate k2(M − ne), (ii) (n, ne) → (n + 1, ne + 1) with rate k1(M − ne)
and (iii) (n, ne) → (n − 1, ne − 1) with rate k0 n ne. Only the first reaction leads
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Figure 6.5: Comparison of the closed-form time-dependent probability distribution of substrate molecules,
for the enzyme reaction (6.1) with multiple enzyme molecules M , and initial substrate molecules N ,
to the distribution obtained from the SSA. Note that the closed-form solution is given by Eq. (6.38).
In A(i)–(iii), N = 15, M = 20, k = 102 and we simulate the SSA using k0 = 1, k1 = 102 and k2 = 1;
the theory (green lines) agrees with the SSA since the quasi-equilibrium assumption is justified, i.e.,
k1/k2 ≫ 1. In B(i)–(iii), N = 60, M = 10, k = 10−1 and we simulate the SSA using k0 = 103, k1 = 102

and k2 = 1; again the theory is in agreement with the SSA since quasi-equilibrium is justified. Note
that these results show that the theory accurately describes both the N ≥ M and the M ≥ N cases.
In A(iv) and B(iv) we show the corresponding plots of the time-evolution of the mean ⟨n⟩ and of the
standard deviation σ of the distributions of substrate molecules, as predicted by our theory; these are
compared with the mean calculated from the SSA and the corresponding mean ⟨n⟩d obtained from
the numerical solution of the deterministic rate equations given by Eq. (6.3). The parameter set in
B is shown to be transiently bimodal in B(ii), whereas for the parameter set describing A transient
bimodality is not observed. Each SSA probability distribution here is constructed from 105 individual
reaction trajectories.
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Figure 6.6: Testing the conditions necessary for the accuracy of the stochastic QEA. The three panels
(i)–(iii) show how the accuracy of the closed-form time-dependent solution changes with time as we vary
k0/k2 and k1/k2 whilst keeping k = k1/k0 fixed to 102 for the initial substrate number N = 102 and
the total number of enzyme molecules equal to M = 25. The green line denotes the stochastic QEA
solution from Eq. (6.38); SSA 1 (black dots) denotes the SSA prediction with parameters k0/k2 = 1,
k1/k2 = 102 calculated over 104 trajectories; SSA 2 (blocked red region) denotes the SSA prediction
with parameters k0/k2 = 10−2, k1/k2 = 1 calculated over 105 trajectories; SSA 3 (blocked blue region)
denotes the SSA prediction with parameters k0/k2 = 10, k1/k2 = 103 calculated over 103 trajectories.
It is clear that SSA 2 is poorly predicted by P (n; t), which is expected as k1 = O(k2). Since P (n; t) is
in equally good agreement with SSA 1 and SSA 3 it can be seen that the only requirement is k1 ≫ k2,
without requiring additional constraints on k0.
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to a transition out of the current group of microstates (since its associated with the

product formation step) and hence the probability of exiting the current group is

k2(M − ne)/((k1 + k2)(M − ne) + k0 n ne). It is easy to prove that the latter is always

less than k2/(k1 + k2). Hence quasi-equilibrium of microstates in each group is possible

when k2/(k1 + k2) ≪ 1. In other words, generally the closed-form solution for the

distribution of substrate numbers will be accurate for all times provided k1 ≫ k2.

In Fig. 6.5A(i-iii) and 6.5B(i-iii) we show agreement between P (n; t′) from Eq. (6.38) and

the SSA where k1 ≫ k2 is enforced, over times ranging between the initial time, when

the number of substrate is n = N and the absorbing state at n = 0 for large times, for

cases M ≥ N and N ≥M respectively. In Fig. 6.5A(iv) and 6.5B(iv) we plot the mean

and standard deviation of our analytical distribution (⟨n⟩, σ), the deterministic mean

⟨n⟩d and the mean predicted by the SSA for M ≥ N and N ≥M respectively. The SSA

prediction of the mean is shown to be in exact correspondence with ⟨n⟩ when the QEA

holds. The discrepancy previously seen in Fig. 6.2B(iv) between ⟨n⟩ and ⟨n⟩d at low

molecule number is no longer observed in Fig. 6.5A(iv) where M = O(N), highlighting

that the discrepancy seen in Fig. 6.2B(iv) originates from the molecular discreteness

of the enzyme species. We additionally note the presence of transient bimodality in

Fig. 6.5B(ii) similar to that seen in the single enzyme case from Section 6.4.1; note

that the parameter set chosen for Figs. 6.5A(i-iii) does not exhibit transient bimodality.

The parameter space of transient bimodality is explored later in more detail in Section

6.4.2. In Fig. 6.6 we demonstrate using stochastic simulations that, as predicted by our

theory, the requirement for the stochastic QEA to be a good approximation relies only

on satisfying the condition k1 ≫ k2, and does not require any additional constraint on

the value of k0.

Time-dependent solution for the probability distribution of enzyme molecules

Having solved the master equation for the group dynamics, it is relatively straightforward

to extract the time-dependent probability distribution for the number of free enzyme

molecules, P (nE ; t′), and hence the distribution for the number of enzyme-substrate

complexes, P (nC ; t′). As previously, we begin by considering the N ≥M system depicted

in Fig. 6.3. We observe that the groups 0 ≤ m ≤ N −M all contain a microstate with

nE free enzyme molecules, where 0 ≤ nE ≤M , as enzymes are saturated with substrate.

However, for groups N −M < m ≤ N , free enzymes become more abundant than free

substrate molecules, so that microstates containing 0 < nE ≤M enzymes are found only

in groups N −M < m ≤ N − (M − nE). Note that the quasi-equilibrium probability

of having nE free enzymes in group m is pqe
M−nE ,m, given by Eq. (6.32), and the group

probabilities pg
m(t′) are identical to the ones defined for the distribution of substrate
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Figure 6.7: Comparison of the closed-form time-dependent probability distribution of enzyme-substrate
complexes, for the enzyme reaction (6.1) with multiple enzyme molecules M , and initial substrate
molecules N , to the distribution obtained from the SSA. Note that the closed-form solution is given by
Eq. (6.40). In A(i)–(iii), N = 15, M = 20, k = 102 and we simulate the SSA using k0 = 1, k1 = 102 and
k2 = 1; In B(i)–(iii), N = 60, M = 10, k = 10−1 and we simulate the SSA using k0 = 103, k1 = 102 and
k2 = 1 (parameters are the same as in Fig. 6.5). In both cases, the theory (green lines) agrees with the
SSA since the quasi-equilibrium assumption is justified, i.e., k1/k2 ≫ 1. In A(iv) and B(iv) we show
the corresponding plots of the time-evolution of the mean ⟨nC⟩ and of the standard deviation σC of
the distributions of enzyme-substrate complex, as predicted by our theory; these are compared with
the mean calculated from the SSA and the mean ⟨nC⟩d obtained from the numerical solution of the
deterministic rate equations given by Eq. (6.3). Each SSA probability distribution here is constructed
from 105 individual reaction trajectories.
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number in Eq. (6.38). Therefore, the distribution of free enzymes takes the form:

P (nE ; t′) =
N−(M−nE)∑

j=0
pqe

M−nE ,j p
g
j (t′) , 0 ≤ nE ≤M. (6.39)

This expression is valid for any positive integer values of N and M , again due to the

mapping between the Markov chains of N ≥M and M ≥ N systems, described above.

Moreover, for the N ≤M system, the definition of an empty sum as zero ensures that

non-physical values of nE are not allowed, i.e., the number of bound enzymes cannot be

larger than N given the chosen initial conditions, so that P (nE ; t′) = 0 for nE < M −N .

Finally, as nC = M − nE , the probability distribution of the enzyme-substrate complex

follows trivially:

P (nC ; t′) =
N−nC∑

j=0
pqe

nC ,j p
g
j (t′) , 0 ≤ nC ≤M. (6.40)

In Fig. 6.7A(i-iii) and 6.7B(i-iii) we confirm that P (nC ; t′) from Eq. (6.40) and the SSA

are in good agreement for enzyme systems with M ≥ N and N ≥M respectively over

the whole time-range from near the initial condition to the absorbing state, where again

k1 ≫ k2 is enforced (using the same parameters as in Fig. 6.5). Note that the transient

bimodality is seemingly not manifest in P (nC ; t′) at the points in the parameter space

where it is observed for the distribution of substrate number (c.f. Fig. 6.5B(ii) and

6.7B(ii)). In Fig. 6.7A(iv) and Fig. 6.7B(iv) we plot the mean and standard deviation

of our analytical distribution for the enzyme-substrate complexes (⟨nC⟩ and σC), the

mean predicted by the SSA and the mean number of complex molecules ⟨nC⟩d obtained

from the numerical solution of the deterministic rate equations given by Eq. (6.3) for

M ≥ N and N ≥M respectively. The SSA prediction of the mean matches ⟨nC⟩ for all

times further validating our solution, given that the QEA condition holds.

Bimodality

In Fig. 6.8A(i)–(iii) we explore further the transient bimodality observed in Figs. 6.2A(ii),

6.2B(iii) and 6.5B(ii). Namely, we investigate how the strength of the bimodality varies

with the parameters N , M and k using the stochastic QEA solution from Eq. (6.38).

Each point on the heatmap in Fig. 6.8A(i)–(iii) shows, for a particular parameter set,

the maximum of the strength of bimodality calculated over the entire time course from

t′ = 0 to a time near the absorbing state of n = 0. We utilise the measure of bimodality
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Figure 6.8: Heatmaps elucidating the regions of parameter space where transient bimodality is observed
using the stochastic QEA solution (A(i)–(iii)) from Eq. (6.38) and the discrete stochastic MM
approximation (B(i)–(iii)) given by Eq. (6.46). Note that κ0 is a measure of how bimodal is the
distribution of substrate molecules across the timecourse of the reaction (see text for details). Three
parameter regimes are considered: N vs M with k = 1 (left), N vs k with M = 5 (middle) and M vs
k with N = 30 (right). The plots C(i)–(iii) show the closed-form distributions of the stochastic QEA,
P (n; t′), and the discrete stochastic MM approximation, P (n; t′)(M), at the times when the stochastic
QEA exhibits maximum bimodality, for cases with k = 1, N = 80 and (i) M = 1, (ii) M = 5 and (iii)
M = 15 (highlighted on the heatmap A(i) as the points a, b and c respectively). The corresponding
SSA predictions with k0/k2 = 102 and k1/k2 = 102 are also included (constructed from 105 individual
reaction trajectories). Note that the two distributions (discrete stochastic MM approximation and
stochastic QEA) are almost identical in C(i), but the difference becomes more pronounced in C(ii) and
C(iii) with increasing M .
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strength introduced in [115], which is explicitly given by:

κ = Hlow −Hvalley

Hhigh
, (6.41)

where Hlow and Hhigh are the heights of the smallest and largest magnitude modes

respectively, and Hvalley is the height of the valley between the modes. For bimodal

distributions κ has a value between 0 (no bimodality) and 1 (maximum bimodality), and

for monomodal distributions is defined as zero. This definition of bimodality strength

considers the ‘most bimodal’ distributions to have modes of equal height with a deep

valley between them. In order to produce each heatmap we devised a simple algorithm,

as follows. For each parameter set {N,M, k}:

1. Calculate the estimated time to reach the absorbing state which provides us with

the time range, Ta, over which the transient bimodality search will be conducted.

In order to avoid additional computational burdens of finding the absorption

time using stochastic simulations, we use a much simpler but reasonably accurate

estimate obtained from the deterministic QEA mean instead, given by solving Eq.

(6.5) for t′ = k2t:

Ta = N

M
− k

M
log

⟨n⟩ae ⟨n⟩a
k

N

 , (6.42)

where we set ⟨n⟩a = 10−2, which was chosen small enough such that transient

bimodality for all parameter sets was accounted for.

2. Choose the number of iterations, I, over which to check if the distribution is

bimodal. In our case we chose I = 400. This gives the set of times over which we

check for bimodality as ti = iTa/I for 1 ≤ i ≤ I.

3. Define a variable denoting the maximum bimodality measure κ0 which is initially

set to zero. For each ti find the number of peaks in the distribution given by

Eq. (6.38) for the stochastic QEA, and if two peaks are detected, calculate the

bimodality strength κ from Eq. (6.41). If κ > κ0 then set κ0 = κ. Do for all tn.

4. Once all iterations of this process are complete, the value of κ0 will denote the

largest value of the transient bimodality measure for all probability distributions

at t ∈ ti. We take κ0 as the largest value of transient bimodality encountered on

the time course.

The results obtained using this algorithm are summarised by the three heatmaps in

Fig. 6.8A(i)–(iii). The distribution of substrate molecules corresponding to the time at

which the maximal bimodality strength κ0 occurs for points a, b, c in Fig. 6.8A(i) are

shown by the solid blue lines in 6.8C(i)–(iii), respectively. Note that the bimodality is

most pronounced in C(i), less in C(ii) and least in C(iii), in accordance with the value
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of κ0 in Fig. 6.8A(i); this validates the use of Eq. (6.41) as an accurate measure of

the strength of bimodality. From Fig. 6.8A(i)–(iii), it is clear that bimodality is most

pronounced when the initial number of substrate molecules N is significantly larger

than the total enzyme number M and also when k is small, i.e., when the frequency of

enzyme-substrate binding is much larger than the frequency of complex dissociation into

enzyme and substrate. Note that generally the frequency of enzyme-substrate binding is

inversely proportional to the volume of the compartment [68] in which the bimolecular

reaction occurs and hence the transient bimodality is likely observable inside cells.

6.5 The discrete stochastic Michaelis-Menten approximation

We next consider how the analytical solution that we obtained for the reaction system

(6.1) using a combination of averaging and linear algebra techniques in Section 6.4.2

compares with the solution of a commonly used reduced CME for enzyme kinetics.

The reduced CME for single substrate enzyme kinetics can be heuristically justified as

follows (for a derivation see [86]). Under the QEA approximation, from the deterministic

analysis in Section 6.3, it follows that the rate equation describing the time-evolution of

the substrate concentration is given by:

d[S(t)]
dt

= −Vmax[S(t)]
k + [S(t)] . (6.43)

Note that Vmax = k2M , where M is the total number of enzyme molecules. Hence,

species S can be seen as changing into P by means of an effective first-order decay

reaction with rate given by the right hand side of Eq. (6.43). One common way to

approximately describe the enzyme reaction stochastically consists of writing down an

effective propensity describing the decay of substrate, i.e., we postulate that if there

are m substrate molecules at time t then the probability that a reaction S → P occurs

somewhere in a unit volume in the time interval [t, t + dt) is approximately given by

amdt where am = Vmaxm/(k + m). This is the discrete stochastic Michaelis-Menten

(MM) approximation. Hence if we choose an initial condition of N substrate molecules,

it follows that a corresponding effective CME is given by:

∂tPN−m(t) = am+1PN−(m+1)(t)− amPN−m(t), (6.44)

where PN−m(t) is the probability that there are m substrate molecules at time t

(0 ≤ m ≤ N). This CME can be conveniently written as:

∂tP (t) = Q · P (t) (6.45)
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where P (t) = (P0(t), P1(t), ..., PN (t)) andQ is a (N+1)×(N+1) lower bidiagonal matrix

whose only non-zero elements are Qi,i = −aN−(i−1) = − (N−(i−1))Vmax

k+(N−(i−1)) for 1 ≤ i ≤ N + 1,

and Qi+1,i = aN−(i−1) = (N−(i−1))Vmax

k+(N−(i−1)) for 1 ≤ i ≤ N . Using the method in [127] that

was used to solve the master equation for the group dynamics for the single enzyme,

the solution is found to be given by Eq. (6.20), modified to take into account the fact

that PN−n is equivalent to the probability of being in the group N − n:

PN−n(t′)(M) =


0, n > N,

eλ
(M)
1 t′

, n = N,{
(−1)N−n

∏N−n
k=1 λ

(M)
k

}
×
{∑N−n+1

k=1
e

λ
(M)
k

t′∏N−n+1
j=1,j ̸=k

(λ
(M)
k

−λ
(M)
j

)

}
, 0 ≤ n < N.

(6.46)

Note the superscript (M) specifying that the solution is for the CME (6.45) resulting from the

discrete stochastic MM approximation. Here, we have again rescaled the time t′ = k2t, and λ
(M)
m

are the eigenvalues of Q, which are simply given by the diagonal elements:

λ(M)
m = −M(N − (m− 1))

k +N − (m− 1) , 1 ≤ m ≤ N + 1. (6.47)

We shall denote the time-dependent mean and standard deviation of the distribution Eq. (6.46)

by ⟨n(t′)⟩(M) and σ(t′)(M), respectively. Note that the distributions for the number of free

enzymes/enzyme-substrate complexes cannot be obtained under the discrete stochastic MM

approximation as the enzyme number fluctuations are not taken into account, in contrast to the

Stochastic QEA from which enzyme/enzyme-substrate complex distributions can be obtained

(see Section 6.4.2).

6.5.1 Comparison with the stochastic QEA

We used the algorithm described in Section 6.4.2 (with the difference that in step 3 we use

Eq. (6.46) instead of Eq. (6.38)) to explore the regions of parameter space where the discrete

stochastic MM approximation predicts the distribution of substrate molecules to be bimodal.

The results are summarised by the three heatmaps in Fig. 6.8B(i)–(iii). By comparison to the

heatmaps generated using the stochastic QEA in Fig. 6.8A(i)–(iii), it is clear that the discrete

stochastic MM approximation tends to predict bimodality where in reality there is none. Notably,

the bimodality predicted by the discrete stochastic MM approximation is independent of M (see

Figs. 6.8B(i) and B(iii)) since M only acts to scale the eigenvalues representing the system’s

relaxation timescales in Eq. (6.47); in contrast, the stochastic QEA predicts bimodality which is

strongly dependent on M (see Figs. 6.8A(i) and A(iii)). These issues with the discrete stochastic

MM approximation are also clearly discernible in 6.8C(i)–(iii), where we compare the distribution

of substrate molecule numbers predicted by this approximation (green line) with that predicted

by the SSA (dots) and the stochastic QEA (blue line).
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A different way to contrast the discrete stochastic MM approximation and the stochastic QEA

involves comparing the eigenvalues of the transition matrix. In the single enzyme case where

M = 1, one observes that the eigenvalues predicted by Eq. (6.47) exactly match the eigenvalues

predicted by averaging for the group dynamics in the single enzyme case from Eq. (6.10). However,

note that the group dynamics is not precisely the same as the substrate dynamics which is

determined by two microstates in different groups. For example the averaging technique implies

that there are two microstates that contain n substrate molecules: (n, 0) and (n, 1) associated

with groups N− (n+1) and N−n respectively. However, this subtlety is not important if N ≫ 1
and hence the CME resulting from the discrete stochastic MM approximation will practically

lead to the same results as averaging for most cases of interest.

The comparison is more complicated in the case of multiple enzymes (M > 1) and abundant

substrate N ≫ 1, which we explore in Fig. 6.9 (for N = 100 and k = 1), showing how the

discrete stochastic MM approximate solution differs to that from averaging as the ratio M/N

is increased. We first consider the case where M/N = 1/20, and we see that ⟨n⟩(M) in Fig.

6.9A(i) is a good approximation of ⟨n⟩ for the time range of interest, i.e., from the initial state

at N = 100 to a time t′ = 30 where both ⟨n⟩(M) and ⟨n⟩ are small quantities. Note that the

error in the standard deviation for this parameter set, shown in 6.9A(ii), is also small. The slight

difference in the relaxation dynamics is corroborated by small differences in the eigenspectra of

λm (given in Eq. (6.35) again noting that λi = −ai) and λ
(M)
m (given by Eq. (6.47)) which can

be appreciated in Fig. (6.9)A(iii). We additionally plot the deterministic mean as predicted by

Eq. (6.5) which clearly shows the relaxation dynamics of ⟨n⟩a accurately approximates ⟨n⟩ for

short times only.

In Figs. 6.9B(i) and C(i) we see that as M/N increases to 1/5 and 1/2 respectively, ⟨n⟩(M)

becomes a worse approximation of ⟨n⟩, with ⟨n⟩(M) tending more to ⟨n⟩a than ⟨n⟩. The

corresponding error in the standard deviation, as shown in 6.9B(ii) and C(ii), also follows that

of the mean, increasing with M/N . There are two main reasons for this disagreement:

1. If M is comparable to N then initially there will be large fluctuations in the number of

enzyme molecules, which are taken into account by the averaging solution (since it allows

for switching between microstates in each group) but not by the CME resulting from the

discrete stochastic MM approximation (since the total number of enzymes only appears

as a constant through Vmax). This is most clearly seen in Fig. 6.9C(i) where we observe a

large discrepancy between ⟨n⟩ and ⟨n⟩(M) at t′ = t′c ≪ 1 (where t′c is the time over which

the initial transient occurs and is indistinguishable from t′ = 0 in the figure).

2. Where M/N ≈ O(1), the eigenspectra λm and λ
(M)
m show a large disagreement (see Figs.

6.9B(iii) and C(iii)). This leads to the misprediction of the relaxation dynamics of ⟨n⟩(M),

which better represents the dynamics predicted by ⟨n⟩a rather than of ⟨n⟩, for both small

and large times. This is due to the fact that the effective Michaelis-Menten propensity in

the reduced CME Eq. (6.45) is of the same form as the effective rate from the deterministic

rate equation given by Eq. (6.43).

In summary, the solution of the CME obtained by the discrete stochastic MM approximation is

a good approximation to the solution of the CME derived by averaging provided N ≫ 1 and

N/M ≫ 1.



6.5. The discrete stochastic Michaelis-Menten approximation 162

Figure 6.9: Comparison of the discrete stochastic MM approximation and the exact result from averaging
in the quasi-equilibrium limit. A(i), B(i) and C(i) show log-scale plots of ⟨n⟩, ⟨n⟩(M) and ⟨n⟩a (from
Eq. (6.5)) for N = 100, k = 1 and M = 5 (i.e, M/N = 1/20), M = 20 (i.e, M/N = 1/5) and M = 50
(i.e, M/N = 1/2) respectively. The corresponding SSA results with k0/k2 = 102 and k1/k2 = 102 are
also included (constructed from 105 individual reaction trajectories). A(ii), B(ii) and C(ii) are the
corresponding plots of the standard deviations σ(t′), σ(t′)(M) and that of SSA. A(iii), B(iii) and C(iii)
show the eigenspectra for each differing M/N ; each symbol corresponds to an individual eigenvalue
(since the spectra are discrete) and the dashed lines are only present to aid the reader.
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6.6 Multi-substrate mechanisms

Thus far we have considered the simple enzyme mechanism shown in (6.1) where an enzyme can

catalyze a single type of substrate. However, in nature it is common for one enzyme species to be

able to catalyze multiple substrates [279]. Multi-substrate reactions follow various mechanisms

that describe how substrates bind and in what sequence. One such common mechanism is that

of ternary complex formation, whereby two substrates bind sequentially to an enzyme to form a

complex with three molecules. An example is the following mechanism involving two substrate

species A and B and two corresponding reaction products, P and Q [279]:

E +A −⇀↽− EA, EA+B −⇀↽− EAB, EAB −→ EPQ, (6.48)

EPQ −→ EQ+ P, EQ −→ E +Q.

Note that here we have assumed an ordered binding mechanism, in the sense that binding of A

must precede that of B. An alternative is a random binding mechanism, wherein either A or B

could first bind the enzyme. We assume that both enzyme-substrate binding reactions and the

steps subsequent to complex formation are fast such that we can consider the simpler reaction

scheme:

E +A+B
k0−⇀↽−
k1

C
k2−→ E + P +Q. (6.49)

Note that ordered or random binding mechanisms cannot be distinguished within this reaction

scheme. We assume that there are initiallyNA molecules of substrate A,NB molecules of substrate

B, where NA ≥ NB , and M free enzymes. There exists a relation between the number of species

A and B, denoted nA and nB respectively, which we can write as nA − nB = NA −NB ≡ ∆AB .

Hence each microstate of the system is fully specified by (nB , nE). Again the group dynamics

where k1 ≫ k2 are given by Eq. (6.20) but the eigenvalues λm specific to this mechanism are

given by:

λm = −
M−g(m−1)∑

n=1
npqe

n,m−1 = k∂k(ln(Zm−1)), 1 ≤ m ≤ NB + 1, (6.50)

where we have now defined

pqe
i,m = zi,m

Zm
, (6.51)

g(m) = Θ(m− (NB −M))× (m− (NB −M)), (6.52)

zi,m = k−i


i∏

j=1
((NA −m)− (j − 1))((NB −m)− (j − 1))(M − (j − 1))


×


M−g(m)∏

j=i+1
j

 , (6.53)

Zm =
M−g(m)∑

i=0
zi,m. (6.54)
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Using the results for the group dynamics and quasi-equilibrium probabilities, we can then find

the probability distribution for the substrate molecules:

P (nA, nB ; t′) = δnA−∆AB ,nB
×

M−g(nB)∑
j=0

pqe
j,NB−(nB+j)p

g
NB−(nB+j)(t

′)

 , (6.55)

where δi,j is the Kronecker delta symbol. This allows us to find the marginal distributions:

P (nB ; t′) =
∑
nA

P (nA, nB ; t′) =
M−g(nB)∑

j=0
pqe

j,NB−(nB+j)p
g
NB−(nB+j)(t

′), (6.56)

P (nA; t′) = P (nB + ∆AB ; t′). (6.57)

Figure 6.10: Comparison of the analytic distribution of two types of substrate species A and B, involved
in the reaction mechanism (6.49), against the distributions obtained using the SSA. Note that SSA A
and SSA B denote the SSA predictions for species A (red dots) and species B (green dots), respectively.
In the panels (i)–(iv) we plot the probability distributions P (nA; t′) (red line; from Eq. (6.57)) and
P (nB ; t′) (green line; from Eq. (6.56)) for four different time points from near the initial condition (i) to
near the absorbing state (iv) (time is non-dimensional as in previous figures). The initial number of
substrate molecules are NA = 60, NB = 40 and the number of enzyme molecules is M = 5; the rates are
k0/k2 = k1/k2 = 103 which enforce the QEA. The analytic distributions are in good agreement with the
respective SSA distributions. Note that the absorbing point of A is nA = 20 while that of B is nB = 0;
this is dictated by the difference between the initial number of substrate molecules NA − NB = 20. Each
SSA probability distribution is constructed from 105 individual reaction trajectories.



6.6. Multi-substrate mechanisms 165

In Fig. 6.10 we compare the analytic marginal distributions against the SSA and as expected we

find very good agreement when the rate parameters are consistent with the QEA. As previously

for the single substrate mechanism, the distributions of A and B molecules display bimodality

at intermediate times.

6.7 Discussion

In summary, we have shown using averaging that in the limit of quasi-equilibrium between

substrate and the enzyme, it is possible to reduce the two variable stochastic description of

the MM reaction to that of an effective one variable master equation describing the slow

transitions between groups of microstates. This master equation is subsequently solved exactly,

using methods from linear algebra and complex analysis, to obtain closed-form solutions for

the time-dependent marginal distributions of substrate and enzyme numbers. We have shown

theoretically, and verified by means of stochastic simulations, that the solutions for the time-

dependent marginal distributions are accurate for all times, provided the probability of complex

decay into substrate and enzyme is much larger than the probability of complex decay into

product and enzyme. To our knowledge, this is the first systematically derived approximate

closed-form solution for the MM reaction for an arbitrary initial number of substrate and

enzyme molecules; previous work treated a similar problem but using a heuristic approach [56] or

derived closed-form solutions for the case of a single enzyme molecule [58, 57] or else considered

reactions with multiple enzyme molecules focusing on deriving expressions for the turnover rate

[259, 264, 113]. We have also shown how the same procedure can be used to obtain the solution

of more complex enzyme mechanisms such as those involving the catalysis of multiple types of

substrate by the same enzyme species.

For the MM reaction, we have compared our closed-form solution with that obtained by the

solution of the CME reduced by means of the widely used discrete stochastic MM approximation

[86], where the propensity for substrate decay has a hyperbolic dependence on the number of

substrate molecules. If the initial substrate number N is not much larger than the total enzyme

number M , but the rate constants satisfy the inequality k1 ≫ k2, then the enzyme numbers

fluctuations can be large, even though the rapid equilibrium approximation is valid. In this

case, we show that the distribution predicted by the CME reduced using the discrete stochastic

MM approximation is significantly different than the one obtained from stochastic simulations,

whereas the solution provided by our theory accurately matches the simulations.

Using the closed-form solution for the time-dependent marginal probability distribution for

substrate number, we have found that unexpectedly for a delta function (unimodal) initial

condition, the distribution of substrate numbers can be bimodal at intermediate times, if the

initial number of substrate molecules is significantly larger than the total number of enzyme

molecules and provided the rate of complex decay into substrate and enzyme is much less than

the rate of substrate and enzyme binding. We note that the latter rate in the CME formulation

is inversely proportional to the compartment volume (since the encounter rate of two molecules

decreases with increasing volume [68]), and hence our results imply that in the limit of small

volumes (taken at constant initial number of substrate and enzyme molecules), bimodality of
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the distribution of substrate molecules is observable. This result is of particular relevance to

understanding enzyme dynamics inside cells where the volume is very small. Our system with

the initial conditions used, can then be interpreted as modelling the enzyme-mediated decay

of substrate molecules, following the production (via translation) of a short burst of substrate

molecules N at time t = 0, provided there is not another burst of substrate expression before the

substrate decays; these conditions are common for many cells where protein production occurs

sporadically in bursts of short duration [30, 47]. We emphasise that the presence of transient

bimodality in the MM reaction system is particularly interesting since it has no deterministic

counterpart.



Chapter 7

Exact time-dependent dynamics of

discrete binary choice models

This chapter has been published as [5] entitled Exact time-dependent dynamics of discrete binary

choice models in the Journal of Physics: Complexity. Slight modifications have been made for

its inclusion in this thesis.

7.1 Abstract

We provide a generic method to find full dynamical solutions to binary decision models with

interactions. In these models, agents follow a stochastic evolution where they must choose

between two possible choices by taking into account the choices of their peers. We illustrate our

method by solving Kirman and Föllmer’s ant recruitment model for any number N of discrete

agents and for any choice of parameters, recovering past results found in the limit N → ∞.

We then solve extensions of the ant recruitment model for increasing asymmetry between the

two choices. Finally, we provide an analytical time-dependent solution to the standard voter

model and a semi-analytical solution to the vacillating voter model. Our results show that

exact analytical time-dependent solutions can be achieved for discrete choice models without

invoking that the number of agents N are continuous or that both choices are symmetric,

and additionally show how to practically use the analytics for fast evaluation of the resulting

probability distributions.

167
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7.2 Introduction

That individuals take into account the choices made by others when making their own is evident

to anyone who has witnessed fashion fads, trends and events of mass panic like bank runs.

These collective phenomena have dramatic social consequences, as they are authentic “collective

delusions” [280], of which economic bubbles and the subsequent crashes they produce are eloquent

examples. The mechanism through which they appear is intuitive: sociable individuals tend to

imitate the choices made by their peers, choosing to go to the same restaurant, dress the same

way or buy/sell the same asset as their group of friends or the collective zeitgeist dictates. For

any of these, when a choice becomes that of the majority its dominance and attractiveness tends

to increase, as more and more individuals are persuaded to make it.

To the physicist, this is reminiscent of the mechanism governing certain phase transitions, and

in particular that of the ferromagnetic transition, where the magnetic dipoles in a material all

suddenly point in the same direction when cooled below a critical temperature. Owing to the

common points between these mechanisms, similar behaviour is observed in the abrupt opinion

swings seen in certain social systems (see [281] and references therein).

Thus it is no surprise that one of the strongest criticisms to the old paradigm of the rational

representative agent used in textbook economics is that it does not sufficiently take into account

interactions between agents. In that framework, agents make the choice that maximises a certain

utility function, quantifying the level of satisfaction procured by said choice, by taking into

account the different constraints they face—such as a limited budget.

Because there are no interactions, these models fail to capture the rich collective phenomena,

or even the crises, that appear in real social systems [282]. For example, in a system made of

non-interacting rational agents the only explanation for a large opinion swing is an exogenous

event, such as the publication of new information that influences the agents. Therefore it is

necessary to go further to understand the link between the micromotives that guide agents and

their collective macrobehaviour [283].

A number of efforts have been made to alleviate this issue, notably by considering models

where agents’ decisions are influenced by interactions with their peers [284, 285, 59, 282, 286].

These models often study cases where agents face only two possible choices—reducing the

problem to that of making a binary decision. In this way, one can study toy models describing

social systems where agents interact, in the hope of gaining a better understanding of collective

social phenomena much like the Ising model set a precedent for the understanding of emergent

phenomena in condensed matter physics.

In spite of their simplicity, these models show a very rich phenomenology characterised by the

appearance of crises, hysteresis and other emergent phenomena [287, 282]. In particular, the ant

recruitment model has been of physical interest due to the occurrence of stochastic bimodality

below a critical population, although deterministic analyses show monostability [62]. However,

these dynamical models have often been studied only once their stationary state is reached,

focusing in how their statistical description can change radically through subtle variations of the

parameters that define it. But more insight can be gained by studying the full dynamics of how

said stationary state is actually reached.
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Indeed, one can consider Kirman and Föllmer’s seminal ant recruitment model [59]. In its origin,

it focused in explaining the results of an entomological experiment where an ant colony had

access to two identical food sources. Instead of spreading evenly between the two sources, the ants

were observed to concentrate in one of the two sources before randomly switching collectively to

the other [288]. Similar models have arisen in independent parts of the literature—indeed the

ant rationality model is very similar to the Bass diffusion model [289, 290], which describes the

uptake of a new product or practice in a population, and if modelled stochastically would lead

one to a model isomorphic to the model of Kirman and Föllmer.

The authors of [59] showed that this could be understood through a model were the ants had a

certain propensity to imitate their peers, and another propensity to switch randomly between

the two sources. When the effect of imitation is strong, the distribution of the number of ants in

the food sources is bi-modal, and so one is more likely to find a majority of ants in either of the

two sources, while when the random switching dominates one finds a regime with an unimodal

distribution, with a rough half-and-half split between the two sources.

Although inspired by an example coming from behavioural biology, this model, and others that

are very similar, has been used to explain behaviour in financial markets [291, 292, 63], firm

agglomeration [64], the dynamics of fishing boats [67] and even wealth inequality [293]. The

model is in fact also identical to the Moran model in genetics [60], and is also closely related to

the Pólya urn model reviewed in [294]. Importantly, this chapter is distinguished from previous

studies exploring time-dependent solutions to the ant recruitment model [66, 65] since here we

consider the number of ants to be discrete, and then consider further applications of the methods

herein to solve further binary choice models. We further show that our discrete, finite N results

agree with those found in the thermodynamic limit upon taking N →∞ [65].

An interesting aspect of this model was found in [65], where a full dynamical solution to the

model was provided in the limit of an infinitely large number of ants. Indeed, a key finding is

that the time it takes for the ant colony to switch collectively from one food source to the other

depends exclusively on the rate at which ants switch randomly. This can then be interpreted

as implying that collective switches are driven by a single ant going to the other source and

attracting all the others through an imitative avalanche. It is therefore clear that a precise

dynamical description of such models is key in understanding the collective behaviours they

display.

In this article, we solve this model in the case of a finite number of ants and show how the

results from [65] can be recovered. We also show how our methods can be extended to solve a

large class of similar models, such as the voter model [286, 295].

The chapter is structured as follows. In the first section we describe the ant recruitment model

fully, and show how to map it onto a birth/death process. We solve it analytically using generating

functions, and also obtain semi-analytical results in a computationally efficient way using the

methods described in [127]. We then apply these methods to solving a more general version of

the model, taking into account all possible asymmetries. Finally, we show applications of these

techniques to the voter and vacillating voter models.
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7.3 Setup

We first illustrate our setup by solving the stochastic dynamics of Kirman and Föllmer’s ant

rationality model. Consider a system of N ants where there are two different sources of food,

left L and right R. Each ant is associated with a single food source, and we denote n as the

number of ants at the right-hand food source. Since we do not track the spatial position of the

ants, n completely specifies the state of the system.

The ants are subject to two separate influences: (i) a random influence whereby each ant switches

to the opposite food source at rate ε, and (ii) a collective influence whereby when two ants

meet—at rate ν—if they are associated with opposing food sources, then one of the ants recruits

the other to its food source. Given that any two ants meet at rate ν regardless of their current

food source, it is straightforward to show that the propensity at which two ants at opposing food

sources meet is ν̃(n) = n(N − n)ν/(N − 1). This form of propensity comes from mass-action

kinetics—the number of possible interactions between ants is the product of the number of

ants on the right-hand food source (n) multiplied by the number of ants on the left-hand food

source (N − n). The factor ν is essentially a ‘reaction rate’, and the scaling with respect to

(N −1) means that this propensity scales with the ant population in the same way of the random

influence ϵ scales. We can now write a dynamical effective reaction scheme describing the number

of ants on the right hand food source,

L
(N−n)ε+ν̃(n)−−−−−−−−−⇀↽−−−−−−−−−

nε+ν̃(n)
R. (7.1)

Note that unlike effective reaction schemes often written in chemical reaction networks [81]

the expressions labelling the arrows denote the full propensity for the event to occur given the

state of the system n. From this effective reaction scheme one can then describe the dynamical

evolution of the probability distribution P (n, t) for reaction scheme (7.1) via the following master

equation,

∂tP (n, t) = [(N − (n− 1))ε+ ν̃(n− 1)]P (n− 1, t) + [(n+ 1)ε+ ν̃(n+ 1)]P (n+ 1, t)
− [(N − n)ε+ nε+ 2ν̃(n)]P (n, t),

(7.2)

with a given initial condition that n(t = 0) = n0 ants are initially at the right-hand food

source, represented by P (n, 0) = δn,n0 where δi,k is the Kronecker delta symbol. Defining the

(N + 1)× (N + 1)-dimensional real matrix M as

(M)n,m =δn−1,m ((N − (n− 1))ε+ ν̃(n− 1))
+ δn+1,m ((n+ 1)ε+ ν̃(n+ 1))
− δn,m (Nε+ 2ν̃(n)) ,

(7.3)

it is straightforward to see that the master equation can be re-cast as ∂tP⃗ (t) = MP⃗ , where the

n-th element of P⃗ (t) is P (n, t). The matrix M corresponds to the Liouville or master operator

and completely describes the dynamics of our system as it contains all the information on the

transition rates.
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The steady state distribution P⃗0 can be derived by solving the equation MP⃗0 = 0. This can

be solved by recursion, taking afterwards the N → ∞ limit, with n/N = x fixed to that the

stationary distribution is given by a symmetric Beta distribution [59, 65]. That is,

Ps(n) ≡ P (n, t→∞) ∝
N≫1

( n
N

)ε/µ−1 (
1− n

N

)ε/µ−1
, (7.4)

where we introduce µ = ν
N−1 so that ν̃(n) = n(N − n)µ to match the notation of [65].

This is the main point of interest of this model, as stressed by Kirman [59]: when imitation is

strong, with ε < µ, the most probable state is to have all of the ants in a single food source, as

shown by the divergence of the probability distribution in Eq. (7.4), while the same probability

is ≈ 0 in the high-noise regime ε > µ where the most probable state is to have a 50/50 split

between the two sources. We exhibit this behaviour in Fig. 7.1, and show that even for N = 50
the Beta distribution is a good approximation to the exact distribution. Note that where ε/µ = 1
we get uniform distributions for both P0(n) and Ps(n)

Because the tri-diagonal coefficients (n, n + 1) and (n + 1, n) are positive, and because the

rank of the matrix is clearly N + 1, it is straightforward to show that M has N + 1 distinct

real eigenvalues that we label −λm for m = 0, . . . , N . Indeed, write M = −P∆P−1 with

∆ = diag(λm), then (U⃗m)i = Pim and (V⃗m)i = (P−1)im. These vectors are known respectively

as the right- and left-eigenvectors of M. Further, direct application of the Perron-Frobenius

theorem shows that λm ≥ 0 and that 0 is an eigenvalue of M. We choose therefore to label these

eigenvalues as 0 = λ0 < λ2 < . . . < λN .

The model may now be formally solved as P⃗ (t) = etMP⃗ (0). We may then write M =
−
∑

m λmU⃗mV⃗
T

m , which leads to P⃗ (t) =
∑

m e−λmt
(
V⃗m · P⃗ (0)

)
U⃗m. Denoting finally cm =

(V⃗m · P⃗ (0)) and U⃗m = (fm(0), . . . , fm(N))T
we reach the following formula for the full solution:

P (n, t) =
∑
m

cmfm(n)e−λmt, (7.5)

where the different terms cm, fm(n) and λm remain to be determined.

This is a formal solution of a discrete master equation. Master equations are notorious for being

difficult to solve, especially in time. Common methods include the Poisson representation [74],

Fokker-Planck (or Langevin) approximations [8, 74, 65, 100], field theory [296], the linear-mapping

approximation [91] and the system-size expansion [8, 88, 89]. Below we utilise a combination of

other methods, notably, the method of generating functions [8, 74], eigenfunction methods [8, 74]

and the time-dependent solution to the 1D master equation [127].

In particular, the method used in [65] reached a solution of the same form as Eq. (7.5) by properly

taking the limit N →∞ as to transform the matrix M into a Fokker-Planck partial-differential

operator. The eigenfunctions (equivalent to the eigenvectors of M) and eigenvalues of that

operator were then found by two successive changes of variables mapping the problem onto

a solvable quantum-mechanical problem. We claim to reach equivalent results using simpler

methods that can be reused for other, similar models transparently.
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Figure 7.1: Sample of three different trajectories (left) of the fraction of ants x(n) = n/N on the
right-hand source, with the red and green lines showing two different realisations for N = 50 ants, along
with the corresponding stationary densities (right). Purple bars are the exact stationary distribution
for finite N , P0(x) = NP0(n), and the black lines correspond to the symmetric Beta distribution,
Ps(x) = NPs(n), given in Eq. (7.4). The stochastic simulations are done using the stochastic simulation
algorithm [68]. Notice that in the high imitation regime ε < µ, corresponding to plot (c) the ants tend
to concentrate in one of the food sources for a time of order 1/ε before switching collectively to the
other source. The case ε = µ in (b) corresponds to the situation where the Beta distribution is a uniform
distribution over [0, 1].

7.3.1 Explicit solution

The one-dimensional nature of the problem, along with the form of Eq. (7.5), invites us to

introduce the generating function G(z, t) =
∑

n z
nP (n, t), defined for |z| ≤ 1. Plugging this

definition into the ordinary differential equation system of Eq. (7.2) we obtain the following

partial differential equation,

∂tG(z, t)
z − 1 =εNG(z, t) + (µ(N − 1)(z − 1)

− ε(z + 1))∂zG(z, t)
− µz(z − 1)∂2

zG(z, t),

(7.6)
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where we denote again µ = ν/(N − 1). This generating function PDE is subject to a boundary

condition and an initial condition; the boundary condition relates to the normalisation of

probability and is G(1, t) = 1, while the initial condition at t = 0 is found to be G(z, 0) =∑
n δn,n0z

n = zn0 . Note that probabilities and moments can be obtained directly from the

generating function:

P (n, t) = 1
n!∂

n
z G(z, t)|z=0,

E[(n)r] = ∂n
z G(z, t)|z=1,

(7.7)

where E[(n)r] = E
[∏r−1

i=0 (n− i)
]

is the rth factorial moment.

From Eq. (7.5) it is clear that this function can be written asG(z, t) =
∑

m cm (
∑

n fm(n)zn) e−λmt.

Defining now gm(z) =
∑

n fm(n)zn we reach the same form we would have obtained had we

used an exponential ansatz for the solution [8, 296], namely G(z, t) =
∑

m cmgm(z)e−λmt. The

interpretation of the gm(z) functions is transparent, as they are the “generating functions”

associated to each fm(n).

This is the same ansatz used in time-dependent solutions to quantum mechanical problems [297],

where it arises naturally from the separation of variables G(z, t) = f1(z)f2(t). Note that g0(z)
corresponds, up to a normalisation constant, to the generating function of the steady state

distribution P (n, t→∞) ∝ f0(n).

Plugging this into Eq. (7.6) we reach an ODE in terms of z alone,

µz(z − 1)g′′
m(z)− (µ(N − 1)(z − 1)− ε(z + 1))g′

m(z)−
(
λm

z − 1 + εN

)
gm(z) = 0. (7.8)

One finds the singularities of this ODE are at z = 0, 1 and ∞ and are regular, hence the solution

for gm(z) is given by a sum of two linearly independent hypergeometric type basis functions,

gm(z) = (z − 1)αm

{
c

(m)
1 2F1

(
αm + ε

µ
, αm −N ; 1−N − ε

µ
, z

)
+ c

(m)
2 zN+ ε

µ 2F1

(
αm + ε

µ
, αm +N ; 1 +N + ε

µ
, z

)}
,

(7.9)

where

αm = µ− 2ε+
√

4ε2 − 4εµ+ 4λmµ+ µ2

2µ . (7.10)

However, owing to the definition of the generating function G(z, t), the functions gm(z) should

be polynomials of degree N in z (which follows since the probability of having n > N is 0). We

recall the definition of the hypergeometric function,

2F1(a, b; c, z) =
∞∑

ℓ=0

(a)ℓ(b)ℓ

(c)ℓ
zℓ (7.11)
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where (a)ℓ =
∏ℓ

j=0(a+ j) is the Pochhammer symbol or rising factorial. From this definition,

one can check that this function is a polynomial only when either the first or second argument

is a negative integer. This must hold for all possible values of ε/µ, which means that αm −N or

αm +N should be negative integers.

Consider now the first term in Eq. (7.9): if αm−N is a negative integer, i.e., αm ∈ J0, NK (where

J0, NK = [0, 1, . . . , N ]), we have a polynomial of degree N − αm for the hypergeometric function

which becomes a polynomial of degree N after multiplication with (z − 1)αm , as required. We

now relabel c
(m)
1 = cm.

On the other hand, for the second term we should have that αm + N is a negative integer,

suggesting to take an integer αm ≤ −N and giving a polynomial of degree (−αm) − N for

the hypergeometric term. However this is multiplied afterwards by (z − 1)αm , and one does

not obtain a polynomial but a rational function. Therefore the only admissible solutions have

c
(m)
2 = 0.

We can therefore only keep the first term in the right-hand side of Eq. (7.9) and identify αm

with the index m ∈ J0;NK, allowing us to find the N + 1 eigenvalues of our problem,

λm = m (2ε+ (m− 1)µ) , m ∈ J0;NK, (7.12)

which are precisely those given in [65], with the caveat that here µ depends explicitly on N as

µ = ν/(N − 1). Without loss of generality, we set c
(m)
1 = 1 and absorb it into the definition of

cm.

The constant cm can then be evaluated by projecting the initial condition G(z, 0) = zn0 onto

the eigenfunctions gm(z), which form an orthogonal eigenbasis for a certain scalar product that

can be determined fully using Sturm-Liouville theory (see Appendix E.1). In other words, there

exists a function w(z) such that ⟨gm, gn⟩ =
∫ 1

−1 z w(z)gm(z)gn(z)) = δm,n. It follows then that

cm =
∫ 1

−1 z w(z)zn0gm(z)∫ 1
−1 z w(z)(gm(z))2

, (7.13)

which is equivalent to the projection method on the orthogonal eigenfunctions of the imaginary-

time Hamiltonian used in [65].

We attract the reader’s attention to the fact that the second eigenvalue λ1 is still independent of

N and equal to 2ε: the convergence to the stationary state, and therefore the rate at which ants

switch to another source, is proportional only to the random switching rate, as found in [65] in

the large N limit. We note that the waiting time to switch between the two food sources was

explored more in depth in [62], where they approximately found the mean time it takes an ant

to switch food sources for a given (ε, µ) as N →∞ based on first passage time theory.

It is also possible to retrieve the result from [65] that E[n(t)]− E[n(t→∞)] ∝ e−2εt. Starting

from the second line of Eq. (7.7), we write E[n(t)] =
∑

m cmg
′
m(1)e−λmt. Owing to the term

(z − 1)m in gm(z), it is quite straightforward to show that g′
m(1) = 0 for m ≥ 2. Therefore we

obtain that E[n(t)] = c0g
′
0(1) + c1g

′
1(1)e−2εt as required, with E[n(t → ∞)] = c0g

′
0(1) = 1/2

because of symmetry considerations.
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Note also that the spectrum obtained in Eq. (7.12) matches that of the tan2 Pöschl-Teller

potential [298] for the quantum problem solved in [299]. The corresponding Schrödinger’s

equation is solved by a trigonometric change of variables that puts the eigenvalue problem

into the form of an Euler hypergeometric differential equation, similar to the one obtained in

Eq. (7.8). The discrete eigenvalues are then found by imposing that the wave-function must be

square-normalisable, much as we must impose that the generating function be a polynomial in z.

The method for the large N limit used in [65] mapped the ant model into the tan2-potential

Schrödinger’s equation by writing a Fokker-Planck equation describing the random dynamics

of the variable x = n/N , changing variables into φ = 2x− 1 to obtain another Fokker-Planck

equation with a diffusive term that did not depend on φ and finally by using another common

technique, described in detail in [189], to map this equation into a Schrödinger’s equation. The

method shown above achieves the same result in a much more straightforward way that can be

applied to other similar problems and that allows one to obtain a solution for any value of N .

7.3.2 Practical evaluation of P (n, t)

Using the polynomial expression expressed above, 2F1(−k, a; b, z) =
∑k

l=0
(

k
ℓ

)
(−1)ℓ Γ(a+ℓ)

Γ(a)
Γ(b)

Γ(b+ℓ)z
ℓ,

we now recast gm(z) = cm

∑
n fm(n)zn, which yields

fm(n) = (−1)m−n
n∑

ℓ=0

(
N −m
ℓ

)(
m

n− ℓ

)
Γ (a+ ℓ)

Γ (a)
Γ (b)

Γ (b+ ℓ) ,
(7.14)

with a = m + ε
µ and b = 1 − N − ε

µ . This describes the time-dependent solution up to the

determination of the cm coefficients. We show our results for m = 0, 1 on Figure 7.2, and note

that the agreement with the N →∞ results from [65] is remarkably good.

Noticing then that

c0 = 1

2F1

(
ε
µ ,−N ; 1−N − ε

µ , 1
) ≈

N→∞

Γ
(

2 ε
µ

)
Γ
(

ε
µ

) N− ε
µ (7.15)

and that f0(0) = 1, one has directly that the probability of having n = 0 ants in the right-hand

side food-source in the asymptotic regime behaves as N− ε
µ . In particular, if one does as in [59, 65]

and studies the asymptotic probability density corresponding of the fraction of ants n/N in the

right-hand food source, multiplication by the Jacobian of the transformation means that the

asymptotic density at n/N = 0 behaves as N1− ε
µ . This corresponds to the behaviour of the

density of the symmetric Beta distribution of parameter ε
µ at 0, as given in Eq. (7.4).

Nonetheless, it is possible to obtain the full time-dependent solution for a one-dimensional

master equation such as (7.2) using the alternative method described in [127], which is exact

up to the determination of the eigenvalues of the transition rate matrix which we have already

obtained above. Similar applications of this little-known method have been employed in several
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Figure 7.2: A figure showing the two first modes f0 and f1, represented with the reduced variable
x = n/N . The solid lines correspond to the N → ∞ results from [65] for ε/µ = 0.6 (left) and ε/µ = 2.1
(right), while the dots represent their discrete equivalent using Eq. (7.14) with N = 20. The fit is already
remarkably good at only N = 20. In line with the quantum-mechanical interpretation given in [65], the
mode f1 can be interpreted as describing the hopping of ants from one source to the other, hence its
asymmetric shape about x = 0.5. Note that this Figure reproduces Figure 2 from [65].

recent publications, for the solution of Brock and Durlauf’s binary decision model [7], a solution

to the Michaelis-Menten enzyme reaction [6], and in solving the fast-switching autoregulatory

genetic feedback loop with bursty gene expression [115]. Note that this method is very similar

to the one described in [129, 128], although these publications use Laplace transforms instead of

Cauchy’s integral formula.

We shall now detail the essential steps from the method of [127] in a generalised form that allows

for multi-step reactions/events. For more rigorous details, see [127]. We start again from the

formal solution P⃗ (t) = etMP⃗ (0), which after using Cauchy’s integral formula reads

P⃗ (t) = 1
2π

∮
γ

dz ezt(zI−M)−1P⃗ (0). (7.16)

where γ is a contour containing all the eigenvalues of M. However, because P (n, 0) = δn,n0 one

can verify that P (n, t) = [(zI−M)−1P⃗ (0)]n = [(zI−M)−1]n,n0 (where M0,0 is the top-left-hand

element of M). We next use that for any invertible matrix A, A−1 = adj(A)/det(A), where

adj(A) is the adjugate matrix of A, or equivalently the transpose of the cofactor matrix. Defining

B(z) = adj (zI−M) we therefore reach the following expression,
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P (n, t) = 1
2πi

∮
γ

dz ezt∏N
i=0(z + λi)

B(z)n,n0 , (7.17)

where B(z)n,n0 is a polynomial in z, as expected, and can be determined using standard

methods [130], including a simple iterative formula for the case of tridiagonal M, i.e., for a

one-step birth death process [131], as is the case here.

Evaluating the integral using Cauchy’s residue theorem leads to the following expression,

P (n, t) =
N∑

m=0

{
e−λmt B(−λm)n,n0∏

j ̸=m(λj − λm)

}
. (7.18)

where we now recognise the equivalence with the result obtained using generating functions,

cmfm(n) = B(−λm)n,n0∏
j ̸=m(λj − λm) . (7.19)

To summarise our results, the generating function approach allowed us to obtain the eigenvalues

−λm and the functions fm describing the solution, up to the constants cm that depend on

the initial state. The last approach, using Cauchy’s integral formula, allowed us to obtain a

more amenable expression that is easy to evaluate numerically provided we have the eigenvalues

obtained previously. We apply these methods to simulate the time-evolution of the distribution

P (n, t) in the case of the symmetric model and the asymmetric generalisations considered below

on Figure 7.3. Note that we validate our analytical results in Fig. 7.3 against the stochastic

simulation algorithm (SSA, [68]), a Monte Carlo method from which one can simulate exact

stochastic trajectories describing master equations, for example Eq. (7.2) (Fig. 7.3, top plot).

7.3.3 Extension to asymmetric sources

Asymmetric noise only

The same analysis can be extended to the asymmetric ant model, studied in [67] to model the

dynamics of fishing boats and in [292] to model agents trading in a financial market. This version

of the model amounts to saying that the noise level ε depends on whether an ant is in the left- or

right-hand food source. The equivalent reaction scheme to Eq. (7.1) describing this asymmetry

in the noise level is,

L
(N−n)ε1+n(N−n)µ−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−

nε2+n(N−n)µ
R, (7.20)

where ε1 and ε2 represent the random influence at the left and right food sources respectively.

The same analysis as above may be carried out in exactly the same way. After solving the

eigenvalue problem using the characteristic function and imposing that it be a polynomial we

find the following expression for the eigenvalues,

λm = m (ε1 + ε2 + (m− 1)µ) , m ∈ J0;NK, (7.21)
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which is the same expression obtained in the continuum N →∞ version obtained in [67].

Similarly, the modes gm(z) read

gm(z) = (z − 1)m
2F1

(
m+ ε1

µ
,m−N ; 1−N − ε2

µ
, z

)
, (7.22)

and the expressions for fm(n) are given by Eq. (7.14) but with a = m+ ε1
µ and b = 1−N − ε2

µ .

Again in this case we find that the convergence rate is given by ε1 + ε2 and therefore does not

depend on the imitation rate µ for any value of N . We verify our analytic solution in Fig. 7.3

(middle plot) against the SSA.

Full asymmetry

The fully asymmetric case corresponds to a situation where the ants have a different imitation

propensity depending on the food source they are currently in. Thus, Eq. (7.1) now reads

L
(N−n)ε1+n(N−n)µ1−−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−−

nε2+n(N−n)µ2

R. (7.23)

The eigenvalue problem is now an ordinary differential equation with four regular singularities,

and can therefore be solved via the Heun function [242, Sec. 31],

gm(z) = H(a, q(λm);α, β, γ, 0; z), (7.24)

where we define

a = µ2/µ1,

q(λm) = (λm −Nε1)(N − 1)
µ1

,

α = −N,

β = (N − 1)ε1

µ1
,

γ = −(N − 1)
(

1 + ε2

µ2

)
.

(7.25)

We require again that this function be a polynomial of orderN . We therefore writeH(a, q(λm);α, β, γ, 0; z) =∑∞
j=0 Cjz

j , with the following recurrence relation (see [242, Sec. 31.3]):

C0 = 1, αγC1 − q(λm(t))C0 = 0,
RjCj+1 − (Qj + q(λm(t)))Cj + PjCj−1 = 0,

(7.26)
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Figure 7.3: Plots showing the time evolution of ant rationality models under varying levels of asymmetry.
In all plots the distributions are shown for N = 50 agents and initial condition x = 0.5, with the
histograms showing the analytic solution (from Eq. (7.18)) and solid lines showing ensemble distributions
from 2500 simulations of the stochastic simulation algorithm (SSA) [68]. The top plot shows a time
evolution for the completely symmetric ant model; the middle plot shows a time evolution for the
asymmetric ε model; and the bottom plot shows a time evolution for the entirely asymmetric case of
ε1 ̸= ε2 and µ1 ̸= µ2. Clearly, as the model becomes more asymmetric more complex behaviours are
possible.

with

Rj = a(j + 1)(j + γ),
Qj = j((j − 1 + γ)(1 + a) + 1 + α+ β − γ),
Pj = (j − 1 + α)(j − 1 + β),

(7.27)

and naturally Cj = 0 for j > N .
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Setting CN+1 = 0, this recurrence leads to an equation for q(λm) using continued fractions.

Writing a1
b1+ a2

b2+...

= a1
b1+

a2
b2+ . . ., we find

q(λm) = R0P1

Q1 + q(λm)−
R1P2

Q2 + q(λm)− . . .
RN−1PN

QN + q(λm) , (7.28)

which then leads to a polynomial of order N + 1 in λm and therefore to the N + 1 distinct

eigenvalues. This case, therefore, does not lead to a situation where we can improve on, say, a

direct diagonalisation of the transition rate matrix.

It is nonetheless possible to study the time evolution of all instances of the model numerically,

as shown on Figure 7.3 (bottom plot).

7.4 Applications to other models

A large class of binary decision models with interactions can be mapped onto birth/death

processes. Indeed, if the dynamics is such that at every time step one or more agents change

their mind from choice A to B, then this can be rewritten as removing an agent of class A from

the population and replacing them with B. Thus it is possible to write a reaction scheme as we

have done previously, write the master equation, find the corresponding differential equation for

the generating function and solve using the methods we have shown.

One of the methods we used was already used in [7] to solve the Brock and Durlauf model [285].

We further illustrate this by giving solutions to the voter and vacillating voter models.

7.4.1 The voter model

In the voter model [300] one is interested in the opinion dynamics of individuals who can vote

for two distinct choices—voting for a left- or right-wing political party, say. We can again chose

to label those choices by L and R.

The model imagines that the agents are embedded in a social network, and they only communicate

with nearest neighbours. In the dynamics, with probability pd an agent is picked at random

and their opinion becomes L or R with equal probability, or with probability 1− pd a pair of

neighbouring agents with opposite opinions LR is chosen, and then one of the agents persuades

the other into adopting their opinion, so that the new pair becomes LL or RR with equal

probability.

In this case, the model bears strong similarities with models for catalytic reactions between two

different chemical species L and R [301, 302, 303] that are embedded in a substrate onto which

they have adsorbed. The interpretation is now that (i) with probability pd per unit time L or R

desorb and are immediately replaced (at equal probability) with L or R, and (ii) with probability

1−pd per unit time a nearest neighbour LR pair react and desorb, and are immediately replaced

with 2Ls or 2Rs. The reaction scheme now reads

L
pd(1−x)

2 + (1−pd)x(1−x)
2−−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−−

pdx

2 + (1−pd)x(1−x)
2

R, (7.29)
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Figure 7.4: Plots showing the time evolution of the voter model (top) and the vacillating voter model
(bottom) for N = 50 agents and initial condition x = 0.5. Unlike the voter model, the vacillating voter
model is capable of exhibiting steady state trimodality (seen here for t = 100), brought on by the unsure
nature of the voters.

where x = n/N is the concentration of species R in the substrate.

Clearly, this is just a special case of the ant recruitment model of Eq. (7.1) in the special case

where µ = (N − 1)(1− 2εN)/2N2 and ε < 1/2N . Hence, its time-dependent dynamics is solved

by the analyses above. We note that although it is a special case of the symmetric ant model

it largely does share the models’ phenomenology—showing the transition from monomodality

to bimodality in the transient and steady state dynamics, albeit in a restricted section of the

parameter space. A benefit of and Föllmer’s ant model is that extensions towards higher degrees

of asymmetry between the food sources are more easily implemented.

7.4.2 The vacillating voter model

Another version of said model is that of the vacillating voter model [295]. This model extends

the voter model to the case where agents are unsure of their opinion. The dynamics is as follows:

every time-step, an agent i with an opinion Si ∈ {L,R} is selected at random. With a probability

∝ ε the agent changes their mind randomly to the opposite choice, and with a probability ∝ ν
the agent then selects another agent j ̸= i at random. If Sj ̸= Si then i’s opinion is updated as

Si ← Sj , but if instead Sj = Si and the agents already agree, then i picks yet another random

agent k. If Sk ̸= Si then Si ← Sk, and i retains their original opinion if Sk = Si.
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Again we may write the reaction scheme for this model,

L
ε(N−n)+ν

(N−n)n
N−1 (1+ N−n

N−1 )
−−−−−−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−−−−−−

εn+ν
(N−n)n

N−1 (1+ n
N−1 )

R, (7.30)

and apply the same reasoning as before.

This now yields third-order ODEs for the N generating function gm(z) (see Appendix E.2).

Using the method of Frobenius, we write each gm(z) as a series and find the conditions for which

it is a polynomial of degree N +1. This then allows to find a continued fraction expression that is

satisfied by the eigenvalues λm, which again allows one to compute a full time-dependent solution

using the resolvent relationship of Eq. (7.18). Our numerical results are shown in Fig. 7.4.

7.5 Conclusion

In this chapter, we have provided an exact solution to the ant recruitment model. We have

proved that we can recover the N →∞ results found through other methods in [65], finding in

particular that the stationary state is reached at an exponential rate of 2ε, independently of N .

We have also shown how our method can be extended to any binary decision model that can be

mapped onto a one-step birth/death process. We have illustrated this with applications to the

voter and the vacillating voter models.

More interesting lines of research are however possible in the context of decision theory. For

example, our method works very well for models that display microscopic reversibility, as the

process of one or more agents changing their mind from A to B can also be reversed by the

process. However, as highlighted in [282], more complicated interactions between agents can

break microscopic reversibility (or break detailed balance, in physics parlance) and possibly lead

to more interesting phenomena.

A promising way to introduce this is through explicit path-dependency in the agents’ decision-

making process. Such effects have been studied through the inclusion of memory effects in

utility functions [304, 305, 306], showing interesting effects such as ageing or memory induced

condensation. There remains, however, to see how such memory effects could arise naturally

from interactions. It should be noted, as highlighted in [293], that under a timescale of order

1/2ε the model we have described here is not ergodic: in the high imitation regime one may

think that one of the two choices is optimal because it has been made all the time so far, but

this may be only because under that timescale the ants are self-consistently “trapped” in one

given choice, and one has not had the time to observe a full collective switch.

Other exciting results in decision theory can be obtained with random interactions. Agents

interacting through random games are already known to produce very rich dynamics, in particular

because multiple Nash equilibria emerge as the games become more complex [307] and because

minute details such as the order in which players update their actions has an impact on the

existence of an equilibrium [308].
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Similarly, if the agents influence each other via a network with random topology and random

weights then one can expect the dynamics to be similar to that of a spin glass, and therefore to

display a rich phase diagram and non-intuitive dynamical behaviour. Progress in this direction

has been made e.g. in [309], whose dynamics strongly resembles those describing glassy population

dynamics in large ecosystems [310, 311] and where we can expect path dependency to emerge

naturally.

By further studying the dynamics of economic toy models, such as those considered in this

chapter, we can further expand the library of qualitative transient behaviours one expects to see

in more complex models. Such qualitative behaviours are highly valuable, since they allow us to

reframe the behaviours of real economic data, and parse them with respect to well understood

behaviours from simpler models.



Chapter 8

Future Directions and Conclusions

In this final chapter, we discuss the most interesting future directions that have arisen from the

work conducted in this thesis, and then conclude the work herein.

8.1 Future Directions

8.1.1 Inference of mechanistic models from single molecule data

Chapter 5 indicated that for gene expression, including nascent and mature mRNA, that the

telegraph model is generally sufficient model for mechanistic gene expression. This is because

there are few experimental data showing that the Fano factors of copy number for either nascent

or mature mRNA are < 1 (which is not possible within the telegraph model). However, new

data has come to our attention for mRNA expression in fission yeast (unpublished, from the lab

of S. Hauf) where simultaneous measurements of nuclear and cytoplasmic mRNA are possible.

Preliminary analysis shows that the Fano factor of the expression profiles can actually be < 1
for both nuclear and cytoplasmic mRNA, meaning that the telegraph model may not be the best

model of gene expression for the data. We aim to map this data to mechanistic and telegraph

models using moment-based maximum likelihood and Bayesian inference (informed by previous

studies such as [312, 313, 314, 315]) and determine using information criteria which is the optimal

minimal model for gene expression in fission yeast.

8.1.2 Inferring volume scaling laws in E. coli

In the work presented in this thesis, no emphasis has been placed on the relationship between gene

expression and the dynamics of the cell cycle including gene replication, gene product partitioning

and gene dosage compensation (among other effects, see [22, 23, 24, 25, 26, 27, 28, 316]). These

studies manage to connect gene expression and cell cycle dynamics analytically, giving rise to

great insights, but also increased complexity that is difficult to interpret. We propose a simpler

approach to studying these dynamics by positing simple volume scaling laws on protein burst

sizes and production rates, whose scaling exponents can be determined from maximum likelihood

or Bayesian inference from mother machine data in E. coli [317]. Such minimalistic approaches

aim to give quantitative results that allow for greater clarity in the coarse grained effect that
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complex cell cycle dynamics exhibit on gene expression (similar to scaling law approaches seen

in [318, 319]). We also hope to investigate the effect of perturbation experiments (unpublished

data from the lab of M. El Karoui) on the volume scaling in an aim to answer whether such

experiments lead to quantitative changes in the dynamics of gene expression.

8.1.3 Origins of transient bimodality in enzyme kinetics

The dynamics of Michaelis-Menten enzyme kinetics seen in Chapter 6 realised the rare phe-

nomenon of transient bimodality, an effect that as of yet has little explanation. The phenomenon

is bizarre in that it does not require the process to admit two distinct behavioural modes as

is generally the case with steady state bimodality—e.g., for autoregulation bimodality can

arise from being in one gene state or the other at any one time. Notably, transient bimodality

has also been observed in the dynamics of lasers, see [275], where it has been claimed that

“transient bimodality does not have a trivial origin because it arises from a delicate combination

of critical slowing down and noise”. Although this may give a qualitative explanation for transient

bimodality it has not been confirmed, nor has it been analysed in a quantitative framework. We

propose to further study the origins of transient bimodality. Work conducted in [320], where

enzyme kinetics is studied from a reaction-path perspective, may suggest a way forward.

8.1.4 Time-dependent analytics for N source ant recruitment

The model of ant rationality studied in Chapter 7 considers two food sources—in the analogy to

economical decision making this is clearly the most simplified case, since generally one does not

have to choose between two options, but indeed a multitude of different ones [321]. Although

the N food source case of Kirman’s model has been solved at steady state [322], it has not been

solved in time. Knowledge of its time-dependency may provide insight into studies of multiple

choice in firm localisation [323, 324] or future technology transformation models [325, 326, 327].

We propose a study on N source ant rationality models using the linear noise approximation

(LNA), in a similar vein to studies conducted on gene expression in cells and tissues [166] and

large-scale reaction networks [328]. These approximate calculations can then be compared against

simulations to determine the validity of the LNA on multiple choice models.

8.2 Conclusions

This thesis has consisted of three main themes: model reduction, mechanistic modelling and

transience in models of stochastic kinetics. These themes have also been considered in three

different fields of study, the main one being stochastic gene expression, but also in enzyme

kinetics and models of social choice. In all three of these fields very similar questions are asked,

and the aim is to accurately model such systems in such a way that we understand the limits of

our approximations, but also that we can capture the key emergent phenomena in our models.

For example, the Hill function is often the preferred choice to model the regulatory function

of an auto-regulatory gene, but it is now found to be a very poor approximation in certain

regimes of positive auto-regulation due to finite molecule number effects—in a very similar

http://www.elkarouilab.fr/people.html
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way to how the Michaelis-Menten enzyme reaction can be approximated by a Hill function

too. One suspects that the disagreement between the models of Michaelis-Menten kinetics

modelled using mass-action kinetics versus the Hill function could also be explained from a

finite molecule number perspective. Of particular note is that once we understand the limits of

our approximations we can use them much more confidently—as is clear from this thesis, since

in Chapter 3 we showed the limits of the Hill function to model auto-regulation and then in

Chapter 4 we used that same approximation to make our analytics tractable.

In terms of capturing the key emergent phenomena there are interesting parallels to draw between

the telegraph model, explaining mRNA gene expression, and Kirman’s ant recruitment model.

Both models are designed to be minimal, and both clearly ignore very important aspects of the

complex systems that define them, e.g., complex gene regulatory interactions in the telegraph

model and similar social network ignorance in the model of ant recruitment. However, in a sense

they are optimally minimal—the telegraph model provides an easy and intuitive narrative to

explain the ‘bursty’ behaviour underlying mRNA expression, while the ant recruitment model

provides a way of understanding the coalescent nature of social choice from a perspective that

relies only on the interactions between agents and not changes in the environment that they

inhabit. Both models can clearly be studied to a higher degree, including more complex and

realistic aspects, but the reasons for their success are also contained in their simplicity. As

unfortunate we may find it as modellers, who are often looking to add complexity and realism,

it is often the simplest explanations that stick around the longest.

A final key comparison between the variety of models seen in this thesis comes from the

importance of transience in modelling across different fields. Transience does not have to mean

that a system never settles to a steady state, but is also very important for small perturbations

away from the steady state. The key question then becomes: What are the key elements of the

model that determine the relaxation back to steady state. In all but the simplest cases, answering

this question is non-trivial. In biology, it is often attributed that biological systems exist at the

so-called “biological steady state”, and in social choice and economics that equilibrium is reached

on very fast time scales (instantaneously in neoclassical economics [329]). However, in reality

this will rarely be the case. In biology, cell-cycle dynamics, circadian rhythms and differentiation

all contribute to the changing state of the cell, and interactions between cells further act to

perturb the state of a cell from its equilibrium. In economics and social choice, information is

not transmitted instantaneously and agents are not perfect in the game theoretic sense, and

changes in the external environment can mean a system takes very long time to settle back to a

steady state [282].

There are however several key modelling features that have been neglected in this thesis, and

that provide other key directions to conduct research in beyond the projects stated above. The

first is that, when modelling gene expression or enzyme kinetics in vivo one should take into

account aspects of cell-cycle dynamics including: partitioning of gene products at cell division,

DNA replication, gene-dosage compensation and dilution [22, 23, 24, 25, 26, 27, 28]. One should

also take care to properly design models that replicate the biological data one is comparing

to, since whether one is using lineage or population measurements of molecule numbers can

have a large impact on molecule number distributions [27, 23]. Another important direction not

explored in this thesis is in the design of computational packages that allow other researchers
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to easily conduct analytics or inference. For example, the scientific programming language

Julia [94] now has packages that easily allow one to model reaction networks [330], produce

and analyse non-linear moment equations [331] and perform Bayesian inference [332]. A final

aspect that has not been considered in this thesis is the inclusion of spatial aspects of stochastic

modelling to include the effects of macro-molecular crowding, compartmentalisation and the

breakdown of the CME [333, 334, 335]. This could provide several new directions for the research

conducted in this thesis, particularly combining transience or mechanistic modelling alongside

the reaction-diffusion master equation as this has rarely been considered.



Appendix A

Chapter 2 Appendices

A.1 Relationship between the deterministic and stochastic models

For the non-bursty feedback loop (Eq. (3.1)), the stochastic description is given by the chemical

master equation which can be formulated as a set of two coupled equations:

dP0(n, t)
dt

=ρu(P0(n− 1, t)− P0(n, t)) + ((n+ 1)P0(n+ 1, t)− nP0(n, t)) (A.1)

+ σuP1(n− 1, t)− σbnP0(n, t),
dP1(n, t)

dt
= ρb(P1(n− 1, t)− P1(n, t)) + ((n+ 1)P1(n+ 1, t)− nP1(n, t)) (A.2)

− σuP1(n, t) + σb(n+ 1)P0(n+ 1, t),

where P0(n, t) is the probability that at time t there are n proteins and the gene is in state

G while P1(n, t) is the probability that at time t there are n proteins and the gene is in state

G∗. Note that time t is non-dimensional and equal to the actual time multiplied by the protein

degradation rate. The probability of n proteins is then given by P (n, t) = P0(n, t) + P1(n, t).
Using these equations it is straightforward to show that the time-evolution equations for the

first moments:

d⟨g⟩
dt

= −σb⟨ng⟩+ σu(1− ⟨g⟩), (A.3)

d⟨n⟩
dt

= −σb⟨ng⟩+ σu(1− ⟨g⟩) + ρu⟨g⟩+ ρb(1− ⟨g⟩)− ⟨n⟩, (A.4)

where ⟨n⟩ =
∑

n nP (n) is the mean numbers of proteins, ⟨g⟩ =
∑

n P0(n) is the fraction of

time the gene is in the ON state (or equivalently the average number of gene in ON state) and

⟨ng⟩ =
∑

n nP0(n). Note that we have here suppressed the time dependence for convenience.

A comparison of Eqs. (3.2)–(3.3) with Eqs. (A.3)–(A.4) shows that the two are the same if

⟨ng⟩ = ⟨n⟩⟨g⟩, i.e., the deterministic and exact stochastic models agree in the means if the

fluctuations in the gene and protein numbers are independent of each other.

We next show that in the limit of fast promoter switching and when there is a non-zero correlation

between the fluctuations of protein and gene, the exact stochastic model gives a time-evolution

equation for the protein number mean which is different than that given by the deterministic

analysis. The limit of fast promoter switching implies that d⟨g⟩/dt ≈ 0 and hence using Eq.

(A.3) it follows that the mean number of proteins conditional on the gene being in state G can
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be written as:

⟨n|G⟩ =
∑∞

n=0 nP0(n)∑∞
n=0 P0(n) = ⟨ng⟩

⟨g⟩
≈ L (1− ⟨g⟩)

⟨g⟩
, (A.5)

from which we obtain after rearrangement:

⟨g⟩ ≈ L

L+ ⟨n|G⟩ . (A.6)

Substituting in Eq. (A.4) we obtain an effective equation for the time-evolution of the protein

numbers under the condition of fast promoter switching:

d⟨n⟩
dt
≈ Lρu + ρb⟨n|G⟩

L+ ⟨n|G⟩ − ⟨n⟩. (A.7)

Contrasting this equation with the effective equation obtained through the deterministic approach,

Eq. (3.4) we see that the two are generally different. They are only the same when ⟨n|G⟩ = ⟨n⟩,
i.e., the mean number of proteins conditional on the gene being in state G is equal to the mean

number of proteins which occurs when gene and protein number fluctuations are independent.

A.2 Exact steady state solution of non-bursty feedback loop with

fast gene switching

The exact steady state solution of Eq. (A.1) has been previously reported in the literature

[42, 336] and is given by:

Pe(n) = 1
n!
d(G0(z) +G1(z))n

dzn

∣∣∣∣
z=0

, (A.8)

G0(z) = A−1 exp (ρb(z − 1))
(

1 + σb

σb

α

ρu
M(1 + α, β, w(z))− α

ρu − ρb
M(α, β, w(z))

)
, (A.9)

G1(z) = A−1 exp (ρb(z − 1))M(α, β, w(z)), (A.10)

with the definitions:

A = 1 + σb

σb

α

ρu
M(1 + α, β, w(1)) +M(α, β, w(1))(1− α

ρu − ρb
), (A.11)

α = σu(ρu − ρb)
ρu − ρb(1 + σb) , (A.12)

β = 1 +
σu + σb

ρu

1+σb

1 + σb
, (A.13)

w(z) = (ρu − ρb(1 + σb)) (1 + σb)z − 1
(1 + σb)2 . (A.14)
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Note that M(x, y, z) is the Kummer confluent hypergeometric function and Gi(z) is the

generating function
∑

n z
nPi(n). Replacing σu by σu/ϵ and σb by σb/ϵ and taking the limit

of ϵ → 0 (the fast switching limit), we find that G(z) becomes a function of only three

non-dimensional parameters L = σu/σb, N = ρu/ρb, ρb and the corresponding steady state

distribution of protein numbers (to leading-order in ϵ) has the form:

P (n) = (1 + L)Nρn
b (nρb + L(L+ n+Nρb))[1 + LN ]n

AM(1 + LN, 1 + L, ρb) +BM(2 + LN, 2 + L, ρb)) , (A.15)

where

A = (LN + n)n!(1 + L)(L+ (N − 1)ρb)[1 + L]n, (A.16)

B = (LN + n)n!(1 + LN)ρb[1 + L]n. (A.17)

A.3 Limits of small and large L from exact steady state solutions

A.3.1 Interchanging the sum and the limit

Here we prove a result which will be used in Sections A.3.2 and A.3.3, for the purpose of

interchanging limits of L with the infinite sum that defines the Kummer function (for example

that in Eq. (3.11) and Eq. (3.30)). For reference, the Kummer function is defined through the

sum:

M(α, β, x) =
∞∑

n=0

[α]n
[β]n

xn

n! . (A.18)

We will prove that:

lim
L→A

∞∑
n=0

[a+ LN ]n
[a+ L]n

ρn
b

n! =
∞∑

n=0
lim

L→A

[a+ LN ]n
[a+ L]n

ρn
b

n! , (A.19)

where A is some real number.

Let fn = [a + LN ]n/[a + L]n which implies fn+1 = fn(a + n + LN)/(a + n + L). Consider

first the case N ≥ 1. Since (a + n + LN)/(a + n + L) ≤ N then if fn ≤ Nn this implies that

fn+1 ≤ Nn+1. Also it is easy to check that f1 ≤ N . Hence by induction it follows that if N ≥ 1
then fn ≤ Nn. Similarly it is straightforward to prove by induction that if N < 1 then fn < 1.

It then follows that:

∞∑
n=0

[a+ LN ]n
[a+ L]n

ρn
b

n! ≤ exp (Nρb), N ≥ 1, (A.20)

∞∑
n=0

[a+ LN ]n
[a+ L]n

ρn
b

n! ≤ exp (ρb), N < 1 (A.21)

Since the sums are bounded by a finite value, it follows by the dominated convergence theorem

that the limit and sum can be switched, i.e., Eq. (A.19) holds.
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A.3.2 The limit of large L

Making use of a standard result [242]:

lim
x→∞

Γ(x+ n)
Γ(x)xn

= 1, ∀n ∈ Z, (A.22)

and [x]n = Γ[x+ n]/Γ[x], we have that for any a ∈ R:

lim
L→∞

[a+ LN ]n
[a+ L]n

= Nn, lim
L→∞

M(a+ LN, a+ L, ρb) =
∞∑

n=0
lim

L→∞

[a+ LN ]n
[a+ L]n

ρn
b

n! = exp (Nρb).

(A.23)

Note that here we have used the interchange of sum and limit as given by Eq. (A.19). Using

Eq. (A.23) and N = ρu/ρb it follows that in the limit of large L, the steady state distribution

of molecule numbers as predicted by the reduced master equation Eq. (3.11) and by the full

master equation in the limit of fast promoter switching Eq. (3.30) is a Poissonian with mean ρu:

lim
L→∞

P (n) = lim
L→∞

Pa(n) = ρn
u exp (−ρu)

n! (A.24)

A.3.3 The limit of small L

Using the definition of the Pochhammer symbol and the standard result Γ(x) ∼ 1/x as x→ 0 ,

one can show that:

lim
L→0

[a+ LN ]n
[a+ L]n

= lim
L→0

Γ(a+ LN + n)Γ(a+ L)
Γ(a+ LN)Γ(a+ L+ n) = 1, ∀n if a ̸= 0,

and

lim
L→0

[LN ]n
[L]n

= lim
L→0

Γ(LN + n)Γ(L)
Γ(LN)Γ(L+ n) =

1, if n = 0,
N, if n ≥ 1

Using these two results, it then follows that:

lim
L→0

M(a+ LN, a+ L, ρb) =
∞∑

n=0
lim
L→0

[a+ LN ]n
[a+ L]n

ρn
b

n! = exp (ρb) if a ̸= 0

and

lim
L→0

M(LN,L, ρb) =
∞∑

n=0
lim
L→0

[LN ]n
[L]n

ρn
b

n! = 1 +N(exp (ρb)− 1) if a = 0

Note that here we have used the interchange of sum and limit as given by Eq. (A.19). Using these

results it is straightforward to show that in the limit of small L, the steady state distribution of

molecule numbers predicted by the heuristic master equation Eq. (3.11) reduces to:

lim
L→0

Pa(n) =


1

1+N(exp (ρb)−1) , if n = 0,
exp (−ρb)ρn

b

n!

(
1 + N−1

1+N(exp (ρb)−1)

)
, if n ≥ 1

(A.25)
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while the steady state distribution of molecule numbers predicted by the master equation in the

limit of fast promoter switching Eq. (3.30) reduces to:

lim
L→0

P (n) = ρn
b exp (−ρb)

n! . (A.26)

Clearly P (n) ̸= Pa(n) since the latter is not-Poissonian and hence shows that in the small L

limit, the approximate heuristic master equation gives the incorrect answer.
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Chapter 3 Appendices

B.1 Stochastic simulations of autoregulation with extrinsic noise

In this paper extrinsic noise is accounted for in the SSA through the introduction of a new

ghost species Y and some new ghost reactions. For example, consider the case where we want

to model a fluctuating degradation rate d = d0(1 + η(t)), where ⟨η(t)⟩ = 0 and ⟨η(t)η(t′)⟩ =
(D/τ) exp (−|t− t′|/τ). We will then replace the degradation reaction, P

d−→ ∅, by the following

set of reactions:

∅
1/(DΩ)−−−−−⇀↽−−−−−

1/τ
Y, P + Y

d0DΩ/τ−−−−−→ Y. (B.1)

We now show why this equivalence exists. The propensity for the degradation reaction in Eq.

(B.1) is (nPnY d0DΩ/τ)/Ω, meaning that the effective degradation rate is d = (nY d0DΩ/τ)/Ω.

Assuming there are large numbers of Y , we apply the van Kampen ansatz that fluctuations in

Y occur around its deterministic steady state mean [8]:

nY

Ω = τ

DΩ + Ω−1/2ϵ(t). (B.2)

Then, employing the system size expansion, and enforcing the linear noise approximation (LNA),

we obtain a linear FPE for the probability of having a fluctuation of size ϵ(t) at a time t, denoted

Π(ϵ, t) [8, 87]:

∂Π(ϵ, t)
∂t

= 1
τ

∂

∂ϵ
(ϵΠ(ϵ, t)) + 1

2
2
DΩ

∂2Π(ϵ, t)
∂ϵ2

. (B.3)

This FPE then admits an equivalent Langevin equation given by:

dϵ(t)
dt

= −1
τ
ϵ(t) +

√
2
DΩβ(t), (B.4)

where β(t) is Gaussian white noise with zero mean and correlator ⟨β(t)β(t′)⟩ = δ(t− t′). Hence,

from Eq. (B.2) it follows that d goes as:

d = d0D
Ω
τ

nY

Ω = d0(1 + η(t)), (B.5)

dη(t)
dt

= −1
τ
η(t) +

√
2D
τ

β(t), (B.6)
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where η(t) = Ω1/2Dϵ(t)/τ . Eqs. (B.5) and (B.6) are consistent with the definition of colored

noise described at the beginning of this section. This modified SSA requires that where τ and

D are both individually large, that τ ≫ D such that slow switching is not enforced between

differing numbers of the ghost species.

B.2 Detailed explanation of condition 2

In order to explain the origin of condition 2—a condition on the length scale of colored noise

fluctuation compared to the rate of variation of the drift term in Eq. (4.47)—we will first consider

a more intuitive example. Consider a Brownian particle subject to a force F (x), whose state is

specified by both its position x, as well as its velocity v. The set of SDEs governing the state of

this particle is then [8]:

dx

dt
= v, (B.7)

dv

dt
= F (x)

m
− γv +

√
kbTγ

m
Γ(t), (B.8)

where m is the mass of the particle, γ is the damping coefficient of the frictional force surrounding

the particle (frictional force is −γmv), kbT is the thermal energy of the particle, and Γ(t) is

Gaussian white noise with zero mean and correlator ⟨Γ(t)Γ(t′)⟩ = δ(t − t′). The equivalent

multivariate FPE for this set of SDEs is [74]:

∂P (x, v; t)
∂t

= γ

[
∂(vP )
∂v

+ kbT

m

∂2P

∂v2

]
− v ∂P

∂x
− F (x)

m

∂P

∂v
. (B.9)

Now following van Kampen p. 216–218 [8], one can utilise singular perturbation theory assuming

that the damping coefficient γ is small (although the same procedure could be done for γ large)

in order to reduce the above FPE in two variables to a FPE in the position variable x alone.

The result after having done this procedure is:

∂P (x; t)
∂t

= − ∂

∂x

(
F (x)
mγ

P

)
+ kbT

mγ

∂2P

∂x2 . (B.10)

Aside from the requirement that γ must be small, there is another condition required of Eq.

(B.10) such that it reasonably approximates Eq. (B.9). This condition arises physically since

we realise that if we are to approximate Eq. (B.9) by Eq. (B.10), then the drift term F (x)/mγ
must be approximately constant over the distance that the velocity is damped. One finds that

the associated ‘length scale’ L over which the velocity is damped is simply the pre-factor of

diffusion term in Eq. (B.10), i.e., L = kbT
mγ [337]. Enforcing the requirement that F (x) is slowly

varying over this length scale we find the inequality L|F ′(x)| ≪ |F (x)|, explicitly:

mγ

kbT
≫
∣∣∣∣F ′(x)
F (x)

∣∣∣∣ , (B.11)
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which must be satisfied for our one variable FPE to be a good approximation. We now return to

our colored noise problem and recall the set of SDEs that define our system:

dn

dt
= h(n) + F (n)η + g2(n)Γ(t), (B.12)

dη

dt
= −1

τ
η + 1

τ
θ(t), (B.13)

where all functions of n and t are defined in Section 4.4.2. This set of SDEs has an equivalent

bi-variate (Stratonovich) FPE given by:

∂P (n, η; t)
∂t

= − ∂

∂n

((
h(n) + F (n)η − 1

2g2(n)g′
2(n)

)
P
)

+ 1
τ

∂

∂η
(ηP ) (B.14)

+ 1
2
∂2

∂n2

(
g2(n)2P

)
+ 1
τ

∂2

∂η2P.

We now recall Eq. (4.47), i.e., our UCNA approximated one variable FPE, where η was

adiabatically eliminated:

∂P (n; t)
∂t

= − ∂

∂n

[(
h̃(n) + g̃(n)g̃′(n)

)
P (n, t)

]
+ ∂2

∂n2

[
g̃(n)2P (n, t)

]
. (B.15)

Analogously to the case of the Brownian particle, this one variable FPE can only be approximately

correct where the variation of the drift term with respect to the length scale of colored noise

fluctuations is small. From Eq. (4.43), we identify our length scale as the pre-factor of the noise

term whose origin is the adiabatic elimination of η, i.e.,

L = F (n)
C(n, τ) . (B.16)

Hence, C(n, τ) must satisfy the following length scale condition

C(n, τ)≫ F (n)
∣∣∣∣∣∂n

(
h̃(n) + g̃(n)g̃′(n)

)
h̃(n) + g̃(n)g̃′(n)

∣∣∣∣∣ (B.17)

if Eq. (B.15) is to be a good approximation of Eq. (B.14), as seen in Eq. (4.66) from the main

text. Note that one can also make the argument that the diffusion term g̃(n)2 should also slowly

vary with respect to L. However, we generally find that this is satisfied if Eq. (B.17) is satisfied,

and hence we do not include this as an additional condition on the validity of the UCNA applied

to cooperative genetic auto-regulation. In application to other reaction networks one should

again test whether this heuristic holds.



Appendix C

Chapter 4 Appendices

C.1 Waiting time calculations for two-state models

C.1.1 Derivation of the waiting time distribution and its moments

Consider the delayed telegraph model describing active Pol II dynamics:

G
σu−−⇀↽−−
σb

G⋆, G
ρ−→ G+A, A =⇒

τ
∅. (C.1)

We want to calculate the distribution of the waiting time between the production of two

consecutive active Pol II molecules (A) along the gene. In other words, given that a paused Pol

II has just been released and become active, what is the distribution of the time before the next

Pol II becomes active? Note that the mechanism of removal of active Pol II does not influence

the statistics of the production events. Hence the calculation that proceeds remains the same

if instead of the delayed telegraph model, we had to use the telegraph model to calculate the

waiting time distribution between two consecutive mature mRNAs.

We define three states: state X where the gene is in state G and the number of active Pol II is

n; state Y where the gene is in state G⋆ and the number of active Pol II is n; state Z where the

gene is in state G and the number of active Pol II is n+ 1. Hence the effective reaction scheme

describing these three states is

X
σu−−⇀↽−−
σb

Y, X
ρ−→ Z. (C.2)

Immediately after an active molecule of Pol II is produced, the gene is in state G and hence our

initial condition is state X. The absorbing state is state Z. The master equations describing the

effective reaction scheme are:

∂tPX(t) = −(σu + ρ)PX(t) + σbPY (t),
∂tPY (t) = σuPX(t)− σbPY (t), (C.3)

196
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with initial condition PX(0) = 1, PY (0) = 0 and PZ(0) = 0. The distribution f(t) of the time t

at which the system enters the absorbing state Z is given by the probability that the system is

in state X at time t multiplied by the rate of switching from state X to Z, i.e., f(t) = ρPX(t).
Solving the differential equations Eq. (C.3) using the Laplace transform we obtain:

f̃(s) = ρ(s+ σb)
(ρ+ s)(s+ σb) + sσu

, (C.4)

where f̃(s) =
∫∞

0 f(t)e−stdt. It then follows that the first three moments of the time between

two consecutive active Pol II production events are given by:

⟨t⟩ = −∂sf̃(0) = σb + σu

ρσb
,

⟨t2⟩ = ∂2
s f̃(0) =

2
(
(σb + σu) 2 + ρσu

)
ρ2σ2

b

,

⟨t3⟩ = −∂3
s f̃(0) =

6
(
(σb + σu)

(
(σb + σu) 2 + 2ρσu

)
+ ρ2σu

)
ρ3σ3

b

. (C.5)

The square of the coefficient of variation of the waiting time (the randomness parameter) is:

Rtele = ⟨t
2⟩ − ⟨t⟩2

⟨t⟩2
= 1 + 2ρσu

(σb + σu) 2 . (C.6)

Note that Rtele > 1 for all parameter values. For reference, the exponential distribution is

characterized by a coefficient of variation squared equal to 1.

C.1.2 Proof of the monotonicity of the waiting time distribution

Here we prove that the waiting time distribution of the delayed telegraph model (and of the

telegraph model) is a monotonically decreasing function. We start by rewriting Eq. (C.4) in the

form:

f̃(s) =
2∑

k=1
βk(1 + sak)−1, (C.7)

where

β1 + β2 = 1, (C.8)

a2β1 + a1β2 = 1
σb
, (C.9)

a1 + a2 = ρ+ σu + σb

ρσb
, (C.10)

a1a2 = 1
ρσb

. (C.11)
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Taking the inverse Laplace transform of Eq. (C.7) one can show that

f(t) = β1
e−t/a1

a1
+ β2

e−t/a2

a2
, (C.12)

∂tf(t) = −β1

a2
1
e−t/a1 − β2

a2
2
e−t/a2 . (C.13)

To determine if f(t) is monotonically decreasing in t, we need to know what is the sign of

a1, a2, β1, β2. From Eqs. (C.10) and (C.11), since the right hand sides of both equations are

positive then a1, a2 must also be positive (if one or both are negative then the sign of the left

hand side will not match the sign on the right hand side of one of the two equations). Also by

solving Eqs. (C.8) and (C.9) simultaneously for β1,2 one finds that these are positive. Because

a1, a2, β1, β2 > 0, it follows from Eq. (C.13) that ∂tf(t) < 0 for all times and hence f(t) is a

monotonic decreasing function of time t. Furthermore, by the initial value theorem [338] and Eq.

(C.4), we have f(0) = lims→∞ sf̃(s) = ρ.

C.2 Waiting time calculations for the mechanistic model

C.2.1 Derivation of the waiting time distribution and its moments

In this section, we extend the analysis of Appendix C.1 to study the mechanistic model, which

is given by:

U
a−⇀↽−
a′
U⋆ b−⇀↽−

b′
U⋆⋆, U⋆⋆ c−→ U⋆ +A, A =⇒

τ
M −→

d
∅. (C.14)

We now derive the distribution of the time between two consecutive active Pol II production

events and also the same but for mature mRNA M . We first consider the active Pol II case. We

define four states: state W where the gene is in state U and the number of active Pol II is n;

state X where the gene is in state U⋆ and the number of active Pol II is n; state Y where the

gene is in state U⋆⋆ and the number of active Pol II is n; state Z where the gene is in state U⋆

and the number of active Pol II is n+ 1. Hence the effective reaction scheme describing these

four states is

W
a−⇀↽−
a′
X

b−⇀↽−
b′
Y, Y

c−→ Z. (C.15)

Just after an active Pol II is produced, the gene is in state U⋆ and hence our initial condition is

state X. The absorbing state is state Z. The master equations describing the effective reaction

scheme are:

∂tPW (t) = −aPW (t) + a′PX(t),
∂tPX(t) = aPW (t) + b′PY (t)− (a′ + b)PX(t),
∂tPY (t) = bPX(t)− (b′ + c)PY (t), (C.16)
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with initial condition PX(0) = 1, PW (0) = PY (0) = PZ(0) = 0. The distribution f(t) of the time

t at which the system enters the absorbing state Z is given by the probability that the system is

in state Y at time t multiplied by the rate of switching from state Y to Z, i.e., f(t) = cPY (t).
Solving the differential equations Eq. (C.16) using the Laplace transform we obtain:

f̃(s) = bc(a+ s)
s (a′ (b′ + d+ s) + s (b′ + c+ s) + b(c+ s)) + a (s (b′ + c+ s) + b(c+ s)) . (C.17)

From the definition of the Laplace transform, we have that the moments are given by

⟨ti⟩ = (−1)i∂i
sf̃(0). (C.18)

The square of the coefficient of variation squared of the time between two consecutive production

events (the randomness parameter) is:

Rmec = ⟨t
2⟩ − ⟨t⟩2

⟨t⟩2
= 1 +

2bc
(
a′ (−a+ b′ + c)− a2)

(a′ (b′ + c) + ab′ + a(b+ c))2 . (C.19)

Note that depending on the parameter values, Rmec can be greater than or less than one (unlike

for two-state models where it was shown in Appendix C.1 that the randomness parameter is

always greater than one).

Suppose there is a fixed time τ between the production of an active Pol II and the production

of a mature mRNA (via elongation and termination). It follows that the time between two

consecutive mature mRNA production events is precisely the same as the time between two

consecutive Pol II activation events, i.e., all the waiting time statistics that we have derived for

active Pol II also hold for mature mRNA too.

C.2.2 Some properties of the waiting time distribution

We note that since f̃(s) in Eq. (C.17) can be written in the form f̃(s) =
∑3

k=1 γk(1 + sck)−1

(for particular values of the constants γk and ck), it follows that

fmec(t) = γ1
e−t/c1

c1
+ γ2

e−t/c2

c2
+ γ3

e−t/c2

c3
. (C.20)

This is unlike that for two-state models in Appendix A where the waiting time distribution was

a sum of two exponentials.

Also by the initial value theorem and Eq. (C.17), we have that f(0) = lims→∞ sf̃(s) = 0. As

well necessarily for any distribution we have that limt→∞ f(t) = 0. Hence it follows by the

behavior of f(t) at t = 0 and t =∞, that the positive function f(t) must achieve one or more

maxima at intermediate times. Hence the waiting time distribution for the mechanistic model

is non-monotonic in time t (unlike for two-state models, which have a monotonic waiting time

distribution).
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C.3 Steady state mean and variance of A in the mechanistic model

We first calculate the statistics of the accumulated active Pol II on the gene, i.e., ignoring

its removal due to elongation. Hence we want to derive the time-dependent first and second

moments of the reaction scheme:

U
a−⇀↽−
a′
U⋆ b−⇀↽−

b′
U⋆⋆, U⋆⋆ c−→ U⋆ +A. (C.21)

The easiest way to calculate these moments is using the linear-noise approximation, which is

exact up to second-order moments for any system with linear propensities (as in our case). The

stoichiometric matrix and the propensity (column) vector are given by:

S =


−1 1 0 0 0

1 −1 −1 1 1

0 0 0 0 1

 , (C.22)

f⃗ = (a⟨U⟩, a′⟨U⋆⟩, b⟨U⋆⟩, b′(1− ⟨U⟩ − ⟨U⋆⟩), c(1− ⟨U⟩ − ⟨U⋆⟩)) , (C.23)

where ⟨ψ⟩ denotes the average number of molecules of species ψ. The species are numbered in the

order U,U⋆, A and the reactions in the order U → U⋆, U⋆ → U,U⋆ → U⋆⋆, U⋆⋆ → U⋆, U⋆⋆ →
U⋆ +A. The matrix element [S]ij is the net change in the number of molecules of species i when

reaction j occurs, and the vector element fj is the average propensity of the jth reaction. Note

that we have used the conservation law ⟨U⋆⋆⟩ = 1− ⟨U⟩ − ⟨U⋆⟩ to simplify the vector f⃗ .

The equations for the first two moments are given by:

d

dt
⟨n⃗⟩ = S · f⃗ , (C.24)

d

dt
C = J · C + C · JT + D, (C.25)

where ⟨ni⟩ is the average number of molecules of species i and [C]ij = Cij is the covariance

between species i and j. Furthermore we have defined the matrix J as the Jacobian of the rate

equations Eq. (C.24) and D as the diffusion matrix which equals D = S ·Diag(f⃗) ·ST . The matrix

Diag(f⃗) is a diagonal matrix with diagonal elements given by the elements of the vector f⃗ .

The time-dependent solution of these equations is quite complex since we have three interacting

species. However, the calculation is much simplified if one makes use of the fact that U,U⋆, U⋆⋆

will reach a steady state after some time. This implies that

d⟨n1⟩
dt

= d⟨n2⟩
dt

= d⟨C11⟩
dt

= d⟨C12⟩
dt

= d⟨C13⟩
dt

= d⟨C22⟩
dt

= d⟨C23⟩
dt

= 0,
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which leads to the solutions:

⟨n1⟩ = ⟨U⟩ = a′ (b′ + c)
a′ (b′ + c) + a (b′ + b+ c) , (C.26)

⟨n2⟩ = ⟨U⋆⟩ = a (b′ + c)
a′ (b′ + c) + a (b′ + b+ c) , (C.27)

C11 = aa′ (b′ + c) (b′ + b+ c)
(a′ (b′ + c) + a (b′ + b+ c))2 , (C.28)

C12 = − aa′ (b′ + c)2

(a′ (b′ + c) + a (b′ + b+ c))2 , (C.29)

C13 = abca′ (ab− (b′ + c) (b′ + b+ c))
(a′ (b′ + c) + a (b′ + b+ c))3 , (C.30)

C22 = a (b′ + c) (a′ (b′ + c) + ab)
(a′ (b′ + c) + a (b′ + b+ c))2 , (C.31)

C23 =
abc
(
a′ (b′ + c)2 + a2b

)
(a′ (b′ + c) + a (b′ + b+ c))3 . (C.32)

However, since active Pol II keeps accumulating with time, we have to solve the time-dependent

equations for its mean and variance which from Eqs. (C.24) and (C.25) are given by:

d

dt
⟨n3⟩ = c(1− ⟨n1⟩ − ⟨n2⟩),

d

dt
C33 = c

(
ab

a′ (b′ + c) + a (b′ + b+ c) − 2C13 − 2C23

)
. (C.33)

Substituting Eqs. (C.26), (C.27), (C.30) and (C.32) in Eq. (C.33) and solving the resulting

differential equations with zero initial conditions, we finally obtain the time-dependent mean

and variance of the accumulated active Pol II:

⟨n3(t)⟩ = abc

a′ (b′ + c) + a (b′ + b+ c) t, (C.34)

C33(t) =
abc
(

2cb′
(
ba′ + (a′ + a)2

)
+ ((a′ + a) b′ + ab)2 + c2

(
2ba′ + (a′ + a)2

))
(a′ (b′ + c) + a (b′ + b+ c))3 t. (C.35)

Hence the Fano factor of accumulated active Pol II is given by:

FFa
A = C33

⟨n3⟩
= 1 +

2bc
(
a′ (−a+ b′ + c)− a2)

(a′ (b′ + c) + a (b′ + b+ c))2 . (C.36)

Note that FFa
A = Rmec given by Eq. (5.36). This equivalence between the Fano factor of

accumulated products and the coefficient of variation of the waiting times has been previously

reported in the single enzyme molecule literature [54].
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Next we use these results to calculate the mean and variance of active Pol II in steady state

conditions, i.e., the statistics of active Pol II due to both binding and unbinding reactions. Let

the number of observed active Pol II at time t be n(t); then it follows that if elongation happens

after a deterministic time τ we can write:

n(t) = n3(t)− n3(t− τ), (C.37)

where n3(t) is the number of active Pol II accumulated up till time t. This relationship between

the observed number of active Pol II and the number of accumulated active Pol II follows from

the elongation dynamics: since all active Pol II molecules have a fixed lifetime of τ , it follows

that molecules produced before time t− τ must have all died by time t and only those produced

in the interval (t− τ, t] will contribute to the number of observed molecules at time t. Hence the

first two moments of the observed active Pol II at time t are given by:

⟨n(t)⟩ =⟨n3(t)⟩ − ⟨n3(t− τ)⟩, (C.38)

Var(n) =⟨n(t)2⟩ − ⟨n(t)⟩2 = C33(t) + C33(t− τ)− 2(⟨n3(t)n3(t− τ)⟩
− ⟨n3(t)⟩⟨n3(t− τ)⟩). (C.39)

The equation for the steady state mean Eq. (C.38) can be easily evaluated by means of Eq.

(C.34) leading to:

⟨n⟩ = abc

a′ (b′ + c) + a (b′ + b+ c)τ. (C.40)

To calculate the steady state variance of observed active Pol II, we need to first evaluate the

correlator ⟨n3(t)n3(t − τ)⟩ − ⟨n3(t)⟩⟨n3(t − τ)⟩ which appears on the right-hand side of Eq.

(C.39). Following Gardiner [74], for any linear system, the autocorrelation vector in steady state

conditions ϵ⃗(t) with elements

ϵi(t) = ⟨ni(t)ni(t0)⟩ − ⟨ni(t)⟩⟨ni(t0)⟩, (C.41)

obeys the differential equation:

d

dt
ϵ⃗ = J · ϵ⃗, (C.42)

with the initial condition given by C(t = t0). Hence we have

ϵ⃗(t) = exp (−(t− t0)J) · C(t0). (C.43)
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Choose t0 = t− τ , it follows that the correlator ⟨n3(t)n3(t− τ)⟩ − ⟨n3(t)⟩⟨n3(t− τ)⟩ is equal to

ϵ3(t). Note that C(t0) = C(t− τ) has elements given Eqs. (C.28)-(C.32) and (C.35). Hence, we

can finally evaluate Eq. (C.39):

Var(n) =τ
abc
(

2cb′
(
ba′ + (a′ + a)2

)
+ (a′b′ + a (b′ + b))2 + c2

(
2ba′ + (a′ + a)2

))
(a′ (b′ + c) + a (b′ + b+ c))3 −A0+

A1 exp
(
−1

2τ
(
−
√

(−a′ + a− b′ − b− c)2 + 4a′ (a− b′ − c) + a′ + a+ b′ + b+ c

))
+

A2 exp
(
−1

2τ
(√

(−a′ + a− b′ − b− c)2 + 4a′ (a− b′ − c) + a′ + a+ b′ + b+ c

))
,

(C.44)

where

A0 =
2ab2c2 (−a′ (a− b′ − c) (a′ + 2a+ b′ + b+ c)− a3)

(a′ (b′ + c) + a (b′ + b+ c))4 , (C.45)

A1 +A2 = A0, (C.46)

A1 −A2 =
2ab2c2

(
a3 (−a+ b′ + b+ c) + (−3a− 2b) (a′)2 (a− b′ − c) + (a′)3 (−a+ b′ + c)

)
(a′ (b′ + c) + a (b′ + b+ c))4

√
(a′ − a+ b′ + b+ c)2 + 4a′ (a− b′ − c)

+

2ab2c2a′ (b′ (3a2 − ab+ b′ (b′ + 2b+ 3c) + (b+ c)(b+ 3c)
)
− a2(b− 3c)− 3a3 − ab(b+ c) + c(b+ c)2)

(a′ (b′ + c) + a (b′ + b+ c))4
√

(a′ − a+ b′ + b+ c)2 + 4a′ (a− b′ − c)
.

(C.47)

Note that A1 and A2 are the solution of the simultaneous equations Eqs. (C.46) and (C.47).

C.4 Derivation of the steady state mean and variance of mature

mRNA numbers for the mechanistic model

The statistics of mature mRNA numbers can be derived much more straightforwardly than those

of the active number of Pol II. In steady state, the flux across a system of species connected by

irreversible reactions will be the same for each species and hence deletion of an intermediate

species has no effect on the statistics of a downstream species. Hence, for the purpose of studying

mature mRNA statistics in the steady state [201], instead of the full scheme (5.1), we can

consider a reduced scheme where the active Pol II is not explicitly described:

U
a−⇀↽−
a′
U⋆ b−⇀↽−

b′
U⋆⋆, U⋆⋆ c−→ U⋆ +M, M

d−→ ∅. (C.48)



The stoichiometric matrix and the propensity vector are given by:

SM =


−1 1 0 0 0 0

1 −1 −1 1 1 0

0 0 0 0 1 −1

 , (C.49)

f⃗M = (a⟨U⟩, a′⟨U⋆⟩, b⟨U⋆⟩, b′(1− ⟨U⟩)− ⟨U⋆⟩), c(1− ⟨U⟩ − ⟨U⋆⟩), d⟨M⟩) , (C.50)

where ⟨X⟩ denotes the average number of molecules of species X. The species are numbered

in the order U,U⋆,M and the reactions in the order U → U⋆, U⋆ → U,U⋆ → U⋆⋆, U⋆⋆ →
U⋆, U⋆⋆ → U⋆ + M,M → ∅. We have here also used the same conservation law as in the

previous Appendix C.3.

The time-evolution equations for the mean numbers and covariance matrix are given by Eqs.

(C.24) and (C.25) where we replace S by SM and f⃗ by f⃗M . Setting the time derivatives to

zero and solving these equations simultaneously, we find the steady state mean and variance of

mature mRNA given by ⟨n3⟩ and C33, respectively. The Fano factor of mature mRNA is then

determined by their ratio:

FFmec
M = C33

⟨n3⟩
= 1 + bc

(
a′ (b′ + c)− a (a′ + d)− a2) /χ, (C.51)

using the definition of χ from the main text.
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Table C.1: Comparison of the mean and variance of n active Pol II and m mature mRNA numbers
in the mechanistic model evaluated from the exact theory (Appendices C.3 and C.4) and delay SSA
(dSSA) with 105 samples. 6 different parameter sets are considered.

Method ⟨n⟩ Var(n) ⟨m⟩ Var(m)

1. a = 0.016 s−1, a′ = 0.08 s−1, b = 0.16 s−1, b′ = 0.016 s−1, c = 0.24 s−1, d = 0.002 s−1, τ = 273.62 s

Theory 6.195 17.554 14.151 27.701

dSSA 6.12 17.333 14.169 27.595

2. a = 0.112 s−1, a′ = 0.032 s−1, b = 0.16 s−1, b′ = 0.016 s−1, c = 0.24 s−1, d = 0.016 s−1, τ = 100 s

Theory 7.851 6.194 4.907 4.384

dSSA 7.664 6.08 4.908 4.38

3. a = 0.144 s−1, a′ = 0.032 s−1, b = 0.96 s−1, b′ = 0.16 s−1, c = 0.24 s−1, d = 0.002 s−1, τ = 273.62 s

Theory 43.511 37.646 99.387 92.745

dSSA 43.292 37.524 99.376 92.712

4. a = 0.144 s−1, a′ = 0.032 s−1, b = 1.12 s−1, b′ = 0.8 s−1, c = 0.24 s−1, d = 0.1 s−1, τ = 80 s

Theory 8.993 9.216 1.124 1.115

dSSA 8.904 9.127 1.124 1.114

5. a = 0.032 s−1, a′ = 0.032 s−1, b = 0.16 s−1, b′ = 0.016 s−1, c = 0.32 s−1, d = 0.002 s−1, τ = 273.62 s

Theory 16.838 36.098 38.462 61.715

dSSA 16.707 35.825 38.473 61.668

6. a = 0.016 s−1, a′ = 0.032 s−1, b = 0.16 s−1, b′ = 0.016 s−1, c = 0.4 s−1, d = 0.005 s−1, τ = 50 s

Theory 2.273 5.909 9.091 21.629

dSSA 2.185 5.6 9.096 21.611

C.5 Comparison to reduction methods using number statistics

Here we compare the waiting time moment matching approach to two well-known model reduction

techniques, which are: (i) matching of the moments of the number distributions and (ii) matching

of the number distributions.

The first method consists of matching the first three moments of transcript number distributions

of the mechanistic and two-state models. We find the steady state mean, variance and skewness of

the transcript numbers in two-state models as functions of ρ, σb and σu and then we equate them

to the steady state mean, variance and skewness of the transcript numbers computed for the

mechanistic model (the first two moments are in Appendices C and D while the third moments

can be computed similarly by solving the moment equations). For a given set of parameters of

the mechanistic model, we solve the resulting system of three equations (with three unknowns ρ,
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σb and σu) numerically—this gives us the effective parameters of the two-state models. We have

searched for numerical solutions throughout huge ranges of parameter space, however as shown in

Fig. 5.7(A-C) and (G-I) we only find a physically meaningful solution (positive real numbers for

the parameters of the two-state models which are shown by black dots in the figure) in the region

of space given by Eq. (5.37) (where the mechanistic and two-state models can be matched using

waiting time statistics; this is the region above the black solid line in the figure). Additionally

note that the moment expressions for active Pol II for both the delayed telegraph model and

mechanistic model are complicated and moment matching results in transcendental equations for

the parameters ρ, σb and σu. The effective parameters for the delayed telegraph model, close to

the contour lines where ∆ = 0, are relatively small. Thus, conventional numerical solvers struggle

to find solutions close to the boundaries (see Fig. 5.7(A-C)). In contrast, Fig. 5.7(G-I) show

that effective parameters for the telegraph model can be found for nearly all mechanistic model

parameter sets within the region given by Eq. (5.37). This is thanks to the relative simplicity of

the analytical expressions for the telegraph model (compared to the transcendental equations

encountered for the delayed telegraph model). In both Fig. 5.7(A-C) and Fig. 5.7(G-I), we

use the FindRoot function with the Newton-Raphson method in Mathematica, where we start

very close to the parameter prediction of the waiting time moment matching method and do

2× 104 iterations with a working precision of 200. Starting with points far from the theoretical

predictions, no physical solutions are possible.

The second method consists of matching the transcript number distributions of the mechanistic

and two-state models via maximum likelihood estimation (MLE). The results are presented in

Fig. 5.7(D-F) and Fig. 5.7(J-L). The likelihood function is given by

Lθ({xi}) =
Ns∏
i=1

P (xi|θ), (C.52)

where {xi} is a set of samples (with length Ns) generated using the delay SSA of the mechanistic

model with specified parameters {a, a′, b, b′, c} (each xi represents the ith sample for the transcript

number), θ is some candidate set of telegraph model parameters {ρ, σu, σb}, and P (xi|θ) is

the probability of measuring xi given a telegraph model with parameters θ. We calculate the

probability density function for a given parameter set θ using the exact solution for the delayed

telegraph model [120] in Fig. 5.7(D-F) and the exact solution for the telegraph model [35] in

Fig. 5.7(J-L). Next, we minimise the negative log-likelihood function

θ∗ = arg min
θ∈Θ

(− logLθ({xi})) , (C.53)

using the adaptive differential evolution algorithm in Julia’s BlackBoxOptim package [339]

to find the optimal parameters θ∗ of the two-state model, where Θ is the set of all possible

two-state model parameters (essentially amounting to a choice of parameter space bounds in

BlackBoxOptim). Using these optimal parameters we obtain the steady state distributions of

active Pol II and of mature mRNA using the exact solutions of the two-state models. Finally, we

compute the Hellinger distance (h) between these distributions and the corresponding ones from

the mechanistic model—the distance is shown by the colour in Fig. 5.7(D-F) and Fig. 5.7(J-L).

Note that in the regions where ∆ > 0, h is generally smaller than in the regions where ∆ < 0 i.e.,
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the transcript number distributions found by MLE best approximate those of the mechanistic

model in the region of parameter space given by Eq. (5.37) (where the mechanistic and two-state

models can be matched using waiting time statistics). Therefore, we can conclude that waiting

time moment matching agrees with this alternative model reduction method, albeit the former

is much more computationally efficient and accurate than the latter.



Appendix D

Chapter 5 Appendices

D.1 Exact time-dependent solution of single enzyme system

The master equation for a single enzyme molecule (given by Eq. (6.6)) was first solved by Arányi

and Tóth [58]. As the original paper is rather difficult to find, we present the solution here. The

authors used marginal probability generating functions

GnE
(z, t) =

N−1+nE∑
n=0

znP (n, nE , t) (nE = 0, 1; t ≥ 0) (D.1)

to transform Eq. (6.6) into the following first-order partial differential equations:
∂G0(z, t)

∂t
= −(k1 + k2)G0(z, t) + k0

∂G1(z, t)
∂z

,

∂G1(z, t)
∂t

= −k0z
∂G1(z, t)

∂z
+ k1zG0(z, t) + k2G0(z, t) .

(D.2)

By a simple substitution one can prove that the solutions have the form:

G0(z, t) = Γe− k1
k0

(z−1)e−k2t + Γ k1 + k2

k1z + k2
e−(k0+k2)t (D.3)

+
2∑

i=1

∞∑
m=0

Γ(m)
i

[
k2 − (k2 + λ

(m)
i )z

−λ(m)
i

]qm

eλ
(m)
i

t ,

G1(z, t) = Γ(−1) − Γe− k1
k0

(z−1)e−k2t − Γe−(k1+k2)t (D.4)

−
2∑

i=1

∞∑
m=0

Γ(m)
i

[
k2 − (k2 + λ

(m)
i )z

−λ(m)
i

]qm+1

eλ
(m)
i

t ,

where

λ
(m)
i ̸= −k2 , qm = − (λ(m)

i )2 + (k1 + k0 + k2)λ(m)
i + k0k2

k0(k2 + λ
(m)
i )

, i = 1, 2 . (D.5)

Since G0 and G1 are generating functions of a system with a finite state space, i.e., the number of

substrate and enzyme are bounded quantities (n ∈ [0, N ], nE ∈ [0, 1]), they must be polynomials

of a finite degree in z. Hence, the summations in Eqs. (D.3) and (D.4) must contain a finite

number of terms only, meaning that Γ = Γ = 0 (if k1 ̸= 0). By the same reasoning the qm must

be positive integers, i.e., 0 ≤ qm ≤ N − 1, (qm = m), then the λ(m) are the roots of a quadratic
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equation:

(λ(m))2 + [k1 + k0(m+ 1) + k2]λ(m) + k0k2(m+ 1) = 0, (m = 0, 1, ..., N − 1). (D.6)

The constants Γ can be determined from the initial conditions:

G0(1, t) +G1(1, t) = 1 ,
G0(z, 0) = 0 ,
G1(z, 0) = zN .

(D.7)

The first constraint implies that Γ(−1) = 1, while the remaining two lead to a linear algebraic

system for Γ(m)
i by enforcing the constraints explicitly on each coefficient of the polynomials G0

and G1 for each power of z. However, solving for Γ(m)
i becomes computationally expensive for

larger values of N .

To summarise, the solution has the form:

G0(z, t) =
2∑

i=1

N−1∑
m=0

Γ(m)
i

[
k2 − (k2 + λ

(m)
i )z

−λ(m)
i

]m

eλ
(m)
i

t ;

G1(z, t) = 1−
2∑

i=1

N−1∑
m=0

Γ(m)
i

[
k2 − (k2 + λ

(m)
i )z

−λ(m)
i

]m+1

eλ
(m)
i

t ,

(D.8)

where

λ
(m)
1 = −k0(m+ 1) + k1 + k2

2 +

√
[k0(m+ 1) + k1 + k2]2 − 4k0k2(m+ 1)

2 ;

λ
(m)
2 = −k0(m+ 1) + k1 + k2

2 −

√
[k0(m+ 1) + k1 + k2]2 − 4k0k2(m+ 1)

2 .

(D.9)

Finally, the probabilities can be calculated from the generating functions according to

P (n, nE , t) = 1
n!
∂nGnE

(z, t)
∂zn

∣∣∣∣
z=0

. (D.10)
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D.2 Figure showing the initial transient

Figure D.1: Exhibition of the initial transient seen explicitly from the SSA. (i) Comparison of two
differing SSA means for the same value of k = 0.1 against ⟨n⟩ from Eq. (6.22). SSA 1 was simulated with
parameters N = 5, M = 1, k0 = 103 and k1 = 102, and SSA 2 N = 5, M = 1, k0 = 102 and k1 = 10.
For most of the time course the SSA means agree with the mean predicted analytically from Eq. (6.22),
aside from the initial transient very close to t′ = 0. (ii) Zoomed in area around the initial transient.
There exists some critical time t′

c for both SSA 1 and 2, denoted by t′1
c and t′2

c respectively, over which
the mean predicted by the SSA relaxes to the mean value predicted by Eq. (6.22). In SSA 1, where k0
and k1 are a magnitude of 10 larger than the same parameters in SSA 2, one observes that the initial
transient occurs over a much shorter time. This relaxation of the SSA means to the mean predicted
by the quasi-equilibrium analysis is known as the initial transient. Dots of differing colour, seen in the
legend, show the means of the stochastic QEA and SSAs at t′ = 0 (IC in the legend refers to initial
conditions). The mean predicted by the stochastic QEA in Eq. (6.22) reaches the quasi-equilibrium
instantaneously at t′ = 0, unlike that seen in the SSA. In both cases the SSA means were determined as
an average over 105 individual reaction trajectories.

D.3 Derivation of Eq. (6.35)

In this appendix we prove the resulted stated in Eq. (6.35) of the main text. First consider the

sum that defines Zm−1 explicitly:

Zm−1 =
M−g(m−1)∑

i=0
zi,m−1 (D.11)

=
M−g(m−1)∑

i=0
k−i

 i∏
j=1

((N −m+ 1)−−(j − 1))(M − (j − 1))

M−g(m−1)∏
j=i+1

j

 .

We now relabel g(m−1) = Q for brevity and consider later the individual cases where g(m−1) = 0
for m ≤ N −M + 1 and g(m − 1) = (m − 1) − −(N −M) for m > N −M + 1. Using the

definition of the Pochhammer function, (x)n =
∏n−1

j=0 (x+ j), one can re-write Eq. (D.11) to give

Zm−1 =
M−Q∑

i=0
k−i(m−N − 1)i(−M)i(i+ 1)M−Q−i. (D.12)
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We now utilise the relation between the Pochhammer function and the Gamma function, namely

(x)n = Γ(x+ n)/Γ(x), which allows us to tactically write Eq. (D.12) as:

Zm−1 = k−(M−Q)Γ(−Q)Γ(m+M −N −Q− 1)
Γ(−M)Γ(m−N − 1) × S, (D.13)

where S is defined by the sum,

S =
M−Q∑

i=0
kM−Q−i Γ(m−N − 1 + i)Γ(i−M)

Γ(m+M −N −Q− 1)Γ(−Q) (i+ 1)M−Q−i. (D.14)

Our task is now to find an analytic function that is equal to the sum S. Motivated by the

Pochhammer and Gamma functions contained within the sum, we look to match this sum to

the definition of a generalised hypergeometric function pFq({α1, α2, ..., αL1}, {β1, β2, ..., βL2}, z)
defined by:

pFq({α1, α2, ..., αL1}, {β1, β2, ..., βL2}; z) =
∞∑

n=0

(∏L1
l=1(αl)n∏L2
l=1(βl)n

× zn

n!

)
. (D.15)

We begin by relabelling the summation index in Eq. (D.14) by j = M −Q− i and again utilising

the definition of the Pochhammer function in terms of Gamma functions, giving us

S =
M−Q∑
j=0

kj(M −Q+ 1− j)j(m−N − 1 +M −Q)−j(−Q)−j . (D.16)

Consider now the latter two Pochhammer functions in the summand of Eq. (D.16). Using the

relation (b)−n = (−1)n/(1− b)n we find that:

(m−N − 1 +M −Q)−j × (−Q)−j = 1
(Q+ 1)j(Q+N + 2−m−M)j

. (D.17)

Now consider the first Pochhammer function in the summand of Eq. (D.16). One can re-write

this as:

(M −Q+ 1− j)j = (−1)j(Q−M)j . (D.18)

Note that (Q −M)j has the property (Q −M)j>M−Q = 0, which is found trivially from the

definition of the Pochhammer function. Using Eqs. (D.17) and (D.18), and the relation j! = (1)j ,

one can then show that:

S =
∞∑

j=0

(
(1)j(Q−M)j

(Q+ 1)j(Q+N + 2−m−M)j
× (−k)j

j!

)
, (D.19)

= 2F2({1, Q−M}, {Q+ 1, Q+N + 2−m−M};−k),

using the definition of the generalised hypergeometric function in Eq. (D.15). Note, one is able to

extend the upper limit of the sum defining S to infinity due to the property (Q−M)j>M−Q = 0.

One finds that Zm−1 is now fully specified by Eqs. (D.13) and (D.19), and we can now return

to our original problem of finding the group transition rates am in Eq. (6.35).
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In order to find am we must now compute am = −k∂k(ln(Zm−1)), which using the chain rule

and the differentiation rules for generalised hypergeometric functions gives:

am =(M −Q) (D.20)

− k(Q−M) 2F2({2, Q−M + 1}, {Q+ 2, Q+N + 3−m−M};−k)
(Q+ 1)(Q+N + 2−m−M) 2F2({1, Q−M}, {Q+ 1, Q+N + 2−m−M};−k) .

Where m ≤ N −M + 1, Q = 0, and Eq. (D.20) becomes:

am = −M ×
(

k 1F1(1−M,−m−M +N + 3;−k)
(−m−M +N + 2) 1F1(−M,−m−M +N + 2;−k) − 1

)
, (D.21)

noting that for Q = 0 the 2F2(...) general hypergeometric function reduces to the 1F1(...)
confluent hypergeometric function. And finally, where m > N−M+1, Q = (m−1)−−(N−M),
and Eq. (D.20) becomes:

am = −(N −m+ 1)×
(

k 1F1(m−N,m+M −N + 1;−k)
(m+M −N) 1F1(m−N − 1,m+M −N ;−k) − 1

)
, (D.22)

where again the 2F2(...) general hypergeometric function reduces to the 1F1(...) confluent

hypergeometric function. This completes our derivation of Eq. (6.35) from the main text.
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Chapter 6 Appendices

E.1 Calculation of cm from Sturm–Liouville theory

In this Appendix we complete the specification of the generating function from Eq. (7.9) in the

main text, explaining how the coefficients cm may be computed from an initial condition. Aside

from the first coefficient that corresponds to the weight on the steady state generating function,

given by c0 = 1/g1,0(1), the other coefficients are determined from the initial condition. We now

look to determine the non-zero coefficients cm≥1 from Sturm–Liouville theory [340].

Consider a second-order linear ODE of the same type as Eq. (7.8) in the main text,[
β1(z)∂2

z + β2(z)∂z + β3(z)
]
f(z, t) = ∂tf(z, t), (E.1)

which can be solved using separation of variables to obtain the general solution

f(z, t) =
∑
m

bmFm(z)e−λmt, (E.2)

where each Fm(z) is a linearly-independent eigenfunction, i.e., a solution of,

ÔFm(z) ≡ β1(z)F ′′
m(z) + β2(z)F ′

m(z) + β3(z)Fm(z) = −λmFm(z), (E.3)

and −λm are the eigenvalues of Ô.

Sturm–Liouville theory states that the eigenfunctions will form an orthogonal basis under the

w-weighted inner product in the Hilbert space L2([a, b], w(z)dz) denoted,

⟨Fn(z), Fm(z)⟩ ≡
∫ b

a

Fn(z)Fm(z)w(z) dz ∝ δn,m, (E.4)

where w(z) is given by,

w(z) = 1
β1(z)e

∫
β2(z)
β1(z) dz

. (E.5)

This orthogonality property then allows one to find the coefficient bm with respect to projections

onto the initial state,

bm = ⟨Fm(z), q(z)⟩
⟨Fm(z), Fm(z)⟩ . (E.6)
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In our case, from Eq. (7.8) we find that

w(z) = (1− z)
2ε
µ −1z−(N+ ε

µ ) (E.7)

and [a, b] = [−1, 1], as it is the region over which the generating function is defined.

One can then find the coefficients cm as,

cm = ⟨gm(z), zn0⟩
⟨gm(z), gm(z)⟩ , (E.8)

where the initial number of ants on the right-hand source is n0. This completes the specification

of the generating function solution which is now simply given by,

G(z, t) =
N∑

m=0
cm(z − 1)m

2F1 (m+ ε/µ,m−N ; 1−N − ε/µ, z) e−m(2ε+(m−1)µ)t. (E.9)

E.2 Solution to the vacillating voter model

Starting from the reaction scheme (7.30), one obtains the following ordinary differential equation

for the functions gm(z):

νz2(z + 1)(z − 1)g′′′
m(z)

+ νz(z − 1)(2 + 4z − 3Nz)g′′
m(z)

− (N − 1)(z − 1)((N − 1)(z + 1)ε+ ν(N + 2z(1−N)))g′
m(z)

+ (N − 1)(λm +N(z − 1)ε)gm(z) = 0.

(E.10)

We next obtain a recursion relation for the coefficients Cj , as

C0 = 1, (N − 1)((N − 1)ε+Nν)C1 − q(λm)C0 = 0,
RjCj+1 − (Qj + q(λm(t)))Cj + PjCj−1 = 0,

(E.11)

with the condition that CN+1 = 0, and where we write

q(λm) =(N − 1)(εN − λm),

Rj =(j + 1)
(
j

(
− j2 + j − 2

)
ν

+ νN(N − 1) + (N − 1)2ε

)
,

Qj =− jν(3N − 2)(N − j),
Pj =(j − 1)ν(j − 2N)(j −N − 1)

− (N − 1)ε((j − 2)N − j + 1).

(E.12)
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We obtain again a continued fraction relation that determines the eigenvalues λm,

q(λm(t)) = R0P1

Q1 + q(λm(t))−
R1P2

Q2 + q(λm(t))− . . .
RN−1PN

QN + q(λm(t)) . (E.13)

Calculating λm from this relation, the full time-dependent solution is given using the resolvent

relationship in Eq. (7.18).
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[33] Leonardo A Sepúlveda, Heng Xu, Jing Zhang, Mengyu Wang, and Ido Golding.

Measurement of gene regulation in individual cells reveals rapid switching between promoter

states. Science, 351(6278):1218–1222, 2016.

[34] Irina Kalita, Ira Alexandra Iosub, Sander Granneman, and Meriem El Karoui. Fine-tuning

of RecBCD expression by post-transcriptional regulation is required for optimal DNA

repair in Escherichia coli . bioRxiv, 2021.

[35] Jean Peccoud and Bernard Ycart. Markovian modeling of gene-product synthesis.

Theoretical population biology, 48(2):222–234, 1995.

[36] Philipp Thomas, Guillaume Terradot, Vincent Danos, and Andrea Y Weiße. Sources,

propagation and consequences of stochasticity in cellular growth. Nature Communications,

9(1):1–11, 2018.

[37] Ulysse Herbach, Arnaud Bonnaffoux, Thibault Espinasse, and Olivier Gandrillon. Inferring

gene regulatory networks from single-cell data: a mechanistic approach. BMC systems

biology, 11(1):105, 2017.

[38] Vahid Shahrezaei and Peter S Swain. Analytical distributions for stochastic gene expression.

Proceedings of the National Academy of Sciences, 105(45):17256–17261, 2008.

[39] Mads Kaern, Timothy C Elston, William J Blake, and James J Collins. Stochasticity in

gene expression: from theories to phenotypes. Nature Reviews Genetics, 6(6):451–464,

2005.

[40] Giorgio Recordati and Tommaso Bellini. A definition of internal constancy and homeostasis

in the context of non-equilibrium thermodynamics. Experimental Physiology, 89(1):27–38,

2004.



BIBLIOGRAPHY 219

[41] Srividya Iyer-Biswas, Fernand Hayot, and Ciriyam Jayaprakash. Stochasticity of gene

products from transcriptional pulsing. Physical Review E, 79(3):031911, 2009.

[42] Ramon Grima, Deena R Schmidt, and Timothy J Newman. Steady-state fluctuations of a

genetic feedback loop: an exact solution. The Journal of Chemical Physics, 137(3):035104,

2012.
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[209] Manuel Pájaro, Antonio A Alonso, Irene Otero-Muras, and Carlos Vázquez. Stochastic

modeling and numerical simulation of gene regulatory networks with protein bursting.

Journal of Theoretical Biology, 421:51–70, 2017.

[210] Arjun Raj, Charles S Peskin, Daniel Tranchina, Diana Y Vargas, and Sanjay Tyagi.

Stochastic mRNA synthesis in mammalian cells. PLoS Biology, 4(10):e309, 2006.

[211] Shawn C Little, Mikhail Tikhonov, and Thomas Gregor. Precise developmental gene

expression arises from globally stochastic transcriptional activity. Cell, 154(4):789–800,

2013.

[212] Tineke L Lenstra, Joseph Rodriguez, Huimin Chen, and Daniel R Larson. Transcription

dynamics in living cells. Annual review of biophysics, 45:25–47, 2016.



BIBLIOGRAPHY 231

[213] Yihan Wan, Dimitrios G Anastasakis, Joseph Rodriguez, Murali Palangat, Prabhakar

Gudla, George Zaki, Mayank Tandon, Gianluca Pegoraro, Carson C Chow, Markus Hafner,

and Daniel R Larson. Dynamic imaging of nascent RNA reveals general principles of

transcription dynamics and stochastic splice site selection. Cell, 184(11):2878–2895, 2021.

[214] Evelina Tutucci, Nathan M Livingston, Robert H Singer, and Bin Wu. Imaging mRNA in

vivo, from birth to death. Annual review of biophysics, 47:85–106, 2018.

[215] Yinfeng Zhang, Susan J Anderson, Sarah L French, Martha L Sikes, Olga V Viktorovskaya,

Jacalyn Huband, Katherine Holcomb, John L Hartman IV, Ann L Beyer, and David A

Schneider. The SWI/SNF chromatin remodeling complex influences transcription by RNA

polymerase I in Saccharomyces cerevisiae. PloS one, 8(2):e56793, 2013.

[216] Leighton J Core, Joshua J Waterfall, and John T Lis. Nascent RNA sequencing reveals

widespread pausing and divergent initiation at human promoters. Science, 322(5909):1845–

1848, 2008.
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